[Python

New design notes

Fernando Pérez

29th April 2002

1 Introduction

This is a draft document with notes and ideas for the IPython rewrite. The section order and
structure of this document roughly reflects in which order things should be done and what the
dependencies are. This document is mainly a draft for developers, a pdf version is provided with
the standard distribution in case regular users are interested and wish to contribute ideas.

A tentative plan for the future:

e 0.2.x: series for bug fixing only and as a reference of functionality.

e 0.3.x: Start from a stable 0.2.x and restructure the code (see below) in 0.3.x until it has all
the 0.2.x functionality but with a sound internal architecture.

e 0.4.x: once the 0.3.x series is completed and stable, release 0.4.x for future bug fixing.

e 0.5.x: future development on the new architecture.

Ideally, IPython should have a clean class setup that would allow further extensions for special-
purpose systems. I view IPython as a base system that provides a great interactive environment
with full access to the Python language, and which could be used in many different contexts. The
basic hooks are there: the magic extension syntax and the flexible system of recursive configuration
files and profiles. But with a code as messy as the current one, nobody is going to touch it.

2 Unit testing

All new code should use a testing framework. Python seems to have very good testing facilities, I
just need to learn how to use them. I should also check out QMTest at http://www.codesourcery.
com/qm/gmtest, it sounds interesting (it’s Python-based too).

http://www.codesourcery.com/qm/qmtest
http://www.codesourcery.com/qm/qmtest

3 Configuration system

Move away from the current ipythonrc format to using standard python files for configuration. This
will require users to be slightly more careful in their syntax, but reduces code in IPython, is more
in line with Python’s normal form (using the $PYTHONSTARTUP file) and allows much more
flexibility. I also think it’s more pythonic’, in using a single language for everything.

Options can be set up with a function call which takes keywords and updates the options Struct.

In order to maintain the recursive inclusion system, write an ’include’ function which is basically a
wrapper around safe_execfile(). Also for alias definitions an alias() function will do. All functionality
which we want to have at startup time for the users can be wrapped in a small module so that config
files look like:

from IPython.Startup import *
éé‘.c_options(automagic=1,colors=’NoC010r’ s)
::Ll.uizlude (’mysetup.py’)
e'a]‘.ias(’ls 1ls --color -1’)

etc.

Also, put all aliases in here, out of the core code.

The new system should allow for more seamless upgrading, so that:

e [t automatically recognizes when the config files need updating and does the upgrade.

e It simply adds the new options to the user’s config file without overwriting it. The current
system is annoying since users need to manually re-sync their configuration after every update.

e It detects obsolete options and informs the user to remove them from his config file.

Here’s a copy of Arnd Baecker suggestions on the matter:

1.) upgrade: it might be nice to have an "auto” upgrade procedure: i.e. imagine that IPython is
installed system-wide and gets upgraded, how does a user know, that an upgrade of the stuff in
" /.ipython is necessary ? So maybe one has to a keep a version number in ~/.ipython and if there
is a mismatch with the started ipython, then invoke the upgrade procedure.

2.) upgrade: I find that replacing the old files in ~/.ipython (after copying them to .old not op-
timal (for example, after every update, I have to change my color settings (and some others) in
~/.ipython/ipthonrc). So somehow keeping the old files and merging the new features would be nice.
(but how to distinguish changes from version to version with changes made by the user ?) For,
example, I would have to change in GnuplotMagic.py gnuplot_mouse to 1 after every upgrade ...

This is surely a minor point - also things will change during the "BIG” rewrite, but maybe this is a
point to keep in mind for this ?

3.) upgrade: old, sometimes obsolete files stay in the ~/.ipython subdirectory. (hmm, maybe one
could move all these into some subdirectory, but which name for that (via version-number ?) ?)

3.1 Command line options
It would be great to design the command-line processing system so that it can be dynamically

modified in some easy way. This would allow systems based on IPython to include their own
command-line processing to either extend or fully replace IPython’s.

4 OS-dependent code

Options which are OS-dependent (such as colors and aliases) should be loaded via include files. That
is, the general file will have:

if os.name == ’posix’:
include(’ ipythonrc-posix.py’)
elif os.name == ’nt’:

include (’ ipythonrc-nt.py’)...

In the -posix, -nt, etc. files we’ll set all os-specific options.

5 Merging with other shell systems

This is listed before the big design issues, as it is something which should be kept in mind when that
design is made.

The following shell systems are out there and I think the whole design of IPython should try to be
modular enough to make it possible to integrate its features into these. In all cases IPython should
exist as a stand-alone, terminal based program. But it would be great if users of these other shells
(some of them which have very nice features of their own, especially the graphical ones) could keep
their environment but gain IPython’s features.

IDLE This is the standard, distributed as part of Python.

pyrepl http://starship.python.net/crew/mwh/hacks/pyrepl.html. This is a text (curses-
based) shell-like replacement which doesn’t have some of IPython’s features, but has
a crucially useful (and hard to implement) one: full multi-line editing. This turns the
interactive interpreter into a true code testing and development environment.

PyCrust http://sourceforge.net/projects/pycrust/. Very nice, wxWindows based system.

PythonWin http://starship.python.net/crew/mhammond/. Similar to PyCrust in some respects,
a very good and free Python development environment for Windows systems.

6 Class design

This is the big one. Currently classes use each other in a very messy way, poking inside one another
for data and methods. ipmaker() adds tons of stuff to the main _IP instance by hand, and the mix-
ins used (Logger, Magic, etc) mean the final _IP instance has a million things in it. All that needs

http://starship.python.net/crew/mwh/hacks/pyrepl.html
http://sourceforge.net/projects/pycrust/
http://starship.python.net/crew/mhammond/

to be cleanly broken down with well defined interfaces amongst the different classes, and probably
no mix-ins.

The best approach is probably to have all the sub-systems which are currently mixins be fully
independent classes which talk back only to the main instance (and not to each other). In the main
instance there should be an object whose job is to handle communication with the sub-systems.

I should probably learn a little UML and diagram this whole thing before I start coding.

6.1 Magic

Now all methods which will become publicly available are called Magic.magic_name, the magic_
should go away. Then, Magic instead of being a mix-in should simply be an attribute of __IP:
_IP.Magic = Magic()

This will then give all the magic functions as _IP.Magic.name(), which is much cleaner. This will
also force a better separation so that Magic doesn’t poke inside __IP so much. In the constructor,
Magic should get whatever information it needs to know about __IP (even if it means a pointer to
_IP itself, but at least we’ll know where it is. Right now since it’s a mix-in, there’s no way to know
which variables belong to whom).

Build a class MagicFunction so that adding new functions is a matter of:

my_magic = MagicFunction(category = ’System utilities’)
my_magic.__call__ = ...

The class constructor should automatically register the functions and keep a table with category
sections for easy sorting/viewing.

6.2 Color schemes

These should be loaded from some kind of resource file so they are easier to modify by the user.

7 Hooks

IPython should have a modular system where functions can register themselves for certain tasks.
Currently changing functionality requires overriding certain specific methods, there should be a clean
API for this to be done.

8 Manuals

The documentation should be generated from docstrings for the command line args and all the magic
commands. Look into one of the simple text markup systems to see if we can get latex (for relyXing
later) out of this. Part of the build command would then be to make an update of the docs based
on this, thus giving more complete manual (and guaranteed to be in sync with the code docstrings).

[PARTLY DONE] At least now all magics are auto-documented, works farily well. Limited Latex
formatting yet.

8.1 Integration with pydoc-help

It should be possible to have access to the manual via the pydoc help system somehow. This might
require subclassing the pydoc help, or figuring out how to add the IPython docs in the right form
so that help() finds them.

Some comments from Arnd and my reply on this topic:

> ((Generally I would like to have the nice documentation > more easily accessable from within
ipython ... > Many people just don’t read documentation, even if it is > as good as the one of
IPython))

That’s an excellent point. I've added a note to this effect in new_design. Basically I'd like help() to
naturally access the IPython docs. Since they are already there in html for the user, it’s probably
a matter of playing a bit with pydoc to tell it where to find them. It would definitely make for a
much cleaner system. Right now the information on IPython is:

-ipython —help at the command line: info on command line switches -7 at the ipython prompt:
overview of IPython -magic at the ipython prompt: overview of the magic system -external docs
(html/pdf)

All that should be better integrated seamlessly in the help() system, so that you can simply say:
help ipython -> full documentation access

help magic -> magic overview

help profile -> help on current profile

help -> normal python help access.

9 Graphical object browsers

I’d like a system for graphically browsing through objects. @obrowse should open a widged with all
the things which @who lists, but cliking on each object would open a dedicated object viewer (also
accessible as @oview <object>). This object viewer could show a summary of what <object>?
currently shows, but also colorize source code and show it via an html browser, show all attributes
and methods of a given object (themselves openable in their own viewers, since in Python everything
is an object), links to the parent classes, etc.

The object viewer widget should be extensible, so that one can add methods to view certain types of
objects in a special way (for example, plotting Numeric arrays via grace or gnuplot). This would be
very useful when using IPython as part of an interactive complex system for working with certain
types of data.

I should look at what PyCrust has to offer along these lines, at least as a starting point.

10 Miscellaneous small things

e Collect whatever variables matter from the environment in some globals for __IP, so we’re not
testing for them constantly (like SHOME, $TERM, etc.)

11 Session restoring

I’ve convinced myself that session restore by log replay is too fragile and tricky to ever work reliably.
Plus it can be dog slow. I'd rather have a way of saving/restoring the *current™ memory state of
IPython. I tried with pickle but failed (can’t pickle modules). This seems the right way to do it to
me, but it will have to wait until someone tells me of a robust way of dumping/reloading *all* of
the user namespace in a file.

Probably the best approach will be to pickle as much as possible and record what can not be pickled
for manual reload (such as modules). This is not trivial to get to work reliably, so it’s best left for
after the code restructuring.

The following issues exist (old notes, see above paragraph for my current take on the issue):

e magic lines aren’t properly re-executed when a log file is reloaded (and some of them, like clear
or run, may change the environment). So session restore isn’t 100% perfect.

e auto-quote/parens lines aren’t replayed either. All this could be done, but it needs some work.
Basically it requires re-running the log through IPython itself, not through python.

e _p variables aren’t restored with a session. Fix: same as above.

12 TAB completer

Some suggestions from Arnd Baecker:

a) for commands: for example when typing at the Ipython prompt he followed by TAB the first time
it does nothing. The second time it gives help and hex as options. I would prefer that already the
first TAB leads to the list of options.

fperez: 1 don’t see this problem on my system. For me, the first TAB completes.

Further TABS don’t do anything. I think it would be nice if they would just go through the list of
options, one after another.

b) For file related commands (Is, cat, ...) it would be nice to be able to TAB complete the files in
the current directory. (once you started typing something which is uniquely a file, this leads to this
effect, apart from going through the list of possible completions ...). (I know that this point is in
your documentation.)

More general, this might lead to something like command specific completion ?

13 Future improvements

e When from <mod> import * is used, first check the existing namespace and at least issue a
warning on screen if names are overwritten.

e Auto indent? This would be nice to have, don’t know how tricky to do.

13.1 Better completion a la zsh

This was suggested by Arnd:

> > More general, this might lead to something like
> > command specific completion ?

>

> I'm not sure what you mean here.

Sorry, that was not understandable, indeed ...

I thought of something like

- cd and then use TAB to go through the list of directories
- Is and then TAB to consider all files and directories

- cat and TAB: only files (no directories ...)
For zsh things like this are established by defining in .zshrc

compctl -g *.dvi’ xdvi
compctl -g *.dvi’ dvips
compctl -g *.tex’ latex

compctl -g *.tex’ tex

14 Outline of steps

Here’s a rough outline of the order in which to start implementing the various parts of the redesign.
The first ’test of success’ should be a clean pychecker run (not the mess we get right now).

e Make Logger and Magic not be mixins but attributes of the main class.

— Magic should have a pointer back to the main instance (even if this creates a recursive
structure) so it can control it with minimal message-passing machinery.

— Logger can be a standalone object, simply with a nice, clean interface.

e Change to python-based config system.

e Move make_IPython() into the main shell class, as part of the constructor. Do this after the
config system has been changed, debugging will be a lot easier then.

e Merge the embeddable class and the normal one into one. After all, the standard ipython
script is a python program with IPython embedded in it. There’s no need for two separate
classes (maybe keep the old one around for the sake of backwards compatibility).

