
IPython

An enhanced Interactive Python

User Manual, v. 0.2.10

Fernando Pérez

29th April 2002

Contents

1 Overview 4

1.1 Main features . 4

1.2 Portability and Python requirements . 5

1.3 Location . 6

2 Installation 6

2.1 Under Unix-type operating systems (Linux, Mac OS X, etc.) 6

2.1.1 RedHat 7.x notes . 6

2.2 Under Windows . 7

2.3 Help access . 7

2.4 Initial configuration comments . 8

2.5 (X)Emacs users . 9

2.5.1 Color support . 9

2.5.2 Name completion . 10

3 Upgrading from a previous version 10

4 Command-line use 11

4.1 Options . 11

1

CONTENTS CONTENTS

5 Interactive use 14

5.1 Magic command system . 14

5.1.1 Magic commands . 16

5.2 Access to the standard Python help . 20

5.3 Dynamic object information . 20

5.4 Readline-based features . 21

5.4.1 Command line completion . 21

5.4.2 Search command history . 21

5.4.3 Persistent command history across sessions 22

5.4.4 Customizing readline behavior . 22

5.5 Session logging and restoring . 22

5.6 System shell access . 23

5.7 System command aliases . 23

5.8 Recursive reload . 24

5.9 Verbose and colored exception traceback printouts 24

5.10 Input caching system . 24

5.11 Output caching system . 24

5.12 Directory history . 25

5.13 Automatic parentheses and quotes . 25

5.13.1 Automatic parentheses . 25

5.13.2 Automatic quoting . 26

5.13.3 Notes on usage of these two features . 26

6 Customization 26

6.1 Sample ipythonrc file . 27

6.2 IPython profiles . 36

7 Embedding IPython in other programs 36

8 Using the Python debugger (pdb) 41

9 Extensions for syntax processing 42

9.1 Pasting of code fragments starting with ’> > > ’ or ’... ’ 42

9.2 Input of physical quantities with units . 43

2

CONTENTS CONTENTS

10 Access to Gnuplot 43

11 Reporting bugs 48

12 Brief history 48

12.1 Origins . 48

12.2 Current status . 48

12.3 Future . 49

13 License 49

14 Credits 49

3

1 OVERVIEW

1 Overview

One of Python’s most useful features is its interactive interpreter. This system allows very fast testing
of ideas without the overhead of creating test files as is typical in most programming languages.
However, the interpreter supplied with the standard Python distribution is somewhat limited for
extended interactive use.

IPython is a free software project (released under the GNU LGPL1) which tries to:

1. Provide an interactive shell superior to Python’s default. IPython has many features for object
introspection, system shell access, and its own special command system for adding functionality
when working interactively. It tries to be a very efficient environment both for Python code
development and for exploration of problems using Python objects (in situations like data
analysis).

2. Serve as an embeddable, ready to use interpreter for your own programs. IPython can be
started with a single call from inside another program, providing access to the current names-
pace. This can be very useful both for debugging purposes and for situations where a blend of
batch-processing and interactive exploration are needed.

3. Offer a flexible framework which can be used as the base environment for other systems with
Python as the underlying language. Specifically scientific environments like Mathematica, IDL
and Mathcad inspired its design, but similar ideas can be useful in many fields.

1.1 Main features

• Dynamic object introspection. One can access docstrings, function definition prototypes,
source code, source files and other details of any object accessible to the interpreter with
a single keystroke (’?’).

• Numbered input/output prompts with command history (persistent across sessions), full search-
ing in this history and caching of all input and output.

• Macro system for quickly re-executing multiple lines of previous input with a single name.

• Session logging (you can then later use these logs as code in your programs).

• Session restoring: logs can be replayed to restore a previous session to the state where you left
it.

• User-extensible ’magic’ commands. A set of commands prefixed with @ is available for control-
ling IPython itself and provides directory control, namespace information and many aliases to
common system shell commands.

• Alias facility for defining your own system aliases.

• Complete system shell access. Lines starting with ! are passed directly to the system shell.
1IPython is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. Its full text is included in the file GNU-LGPL or can be obtained directly
from the Free Software Foundation at: http://www.gnu.org/copyleft/lesser.html.

4

http://www.gnu.org/copyleft/lesser.html

1 OVERVIEW 1.2 Portability and Python requirements

• Completion in the local namespace, by typing TAB at the prompt. This works for keywords,
methods, variables and files in the current directory. This is supported via the readline library,
and full access to configuring readline’s behavior is provided.

• Verbose and colored exception traceback printouts. Easier to parse visually, and in verbose
mode they produce a lot of useful debugging information (basically a terminal version of the
cgitb module).

• Auto-parentheses: callable objects can be executed without parentheses: ’sin 3’ is automat-
ically converted to ’sin(3)’.

• Auto-quoting: using ’,’ as the first character forces auto-quoting of the rest of the line:
’,my_function a b’ becomes automatically ’my_function("a","b")’.

• Extensible input syntax. You can define filters that pre-process user input to simplify input
in special situations. This allows for example pasting multi-line code fragments which start
with ’> > >’ or ’...’ such as those from other python sessions or the standard Python
documentation.

• Flexible configuration system. It uses a configuration file which allows permanent setting of all
command-line options, module loading, code and file execution. The system allows recursive file
inclusion, so you can have a base file with defaults and layers which load other customizations
for particular projects.

• Embeddable. You can call IPython as a python shell inside your own python programs. This
can be used both for debugging code or for providing interactive abilities to your programs with
knowledge about the local namespaces (very useful in data analysis situations, for example).

• Easy debugger access. You can set IPython to call up the Python debugger (pdb) every time
there is an uncaught exception. This drops you inside the code which triggered the exception
with all the data live and its possible to navigate the stack to rapidly isolate the source of a
bug.

1.2 Portability and Python requirements

Developed under Linux, should work under most unices (tested OK under Solaris).

Mac OS X: it works, apparently without any problems (thanks to Jim Boyle at Lawrence Livermore
for the information).

CygWin: I would guess this environment is Unix enough for IPython to work unchanged (any
comments welcome).

Windows: It works fairly well under Windows XP, and I suspect NT and Win2000 should work
similarly. Windows 9x support has been added but has seen very little testing, as I don’t have access
to a machine with that operating system. Comments welcome.

MacOS Classic: it may work (I have no idea), and if not it should be reasonably easy to port it.
But someone else will have to do that, since I have no access to a Macintosh.

IPython requires Python version 2.1 or newer. It has been tested with Python 2.2 and showed no
problems.

5

2 INSTALLATION 1.3 Location

1.3 Location

Currently IPython can be found at http://www-hep.colorado.edu/~fperez/ipython.

2 Installation

Please see the notes in sec. 3 for upgrading IPython versions.

2.1 Under Unix-type operating systems (Linux, Mac OS X, etc.)

1. Unzip/untar the IPython-XXX.tar.gz file wherever you want (XXX is the version number).
It will make a directory called IPython-XXX. Change into that directory where you will find
the files README and setup.py. Once you’ve completed the installation, you can safely remove
this directory.

2. If you are installing over a previous installation of version 0.2.0 or earlier, first remove your
$HOME/.ipython directory, since the configuration file format has changed somewhat (the ’=’
were removed from all option specifications). Or you can call ipython with the -upgrade option
and it will do this automatically for you.

3. IPython uses distutils, so you can install it simply by typing at the system prompt (don’t type
the $)
$ python setup.py install
Note that this assumes you have root access to your machine. If you don’t have root access
or don’t want IPython to go in the default python directories, you’ll need to use the --home
option. For example:
$ python setup.py install --home=$HOME/local
will install IPython into $HOME/local and its subdirectories (creating them if necessary).
You can type
$ python setup.py --help
for more details.

Note that when installing, you will see some SyntaxError messages go by rapidly. Please ignore
them, they are completely harmless (the result of an ugly but necessary hack around some limitations
of distutils).

2.1.1 RedHat 7.x notes

RedHat made the ’wise’ choice of using Python 1.5.2 as the default standard even for users (not just
for internal system stuff). Since they couldn’t be bothered to make things right, now you need to
manually play around to get things to work with Python 2.x (which IPython requires).

First, your system administrator may have fixed things so that as a user you automagically see
python 2.x. Test this by typing ’python’ at the prompt. If you get a Python 2.x prompt, you’re
safe. Otherwise you’ll need to explicitly call Python2.

6

http://www-hep.colorado.edu/~fperez/ipython

2 INSTALLATION 2.2 Under Windows

Start by making sure you did install Python 2.x. The rpm for it is named python2....rpm. You
can check by typing ’python2’ at the command prompt and seeing if you get a python prompt with
2.x as the version. If you don’t have it, install the Python 2.x rpm now.

Once you have confirmed you have Python 2.x installed, call the IPython setup routine as
$ python2 setup.py install

Hopefully, things will work. If they don’t, go yell at RedHat, not me.

2.2 Under Windows

Please note that for the automatic installer to work you need Mark Hammond’s PythonWin exten-
sions (and they’re great for anything Windows-related anyway, so you might as well get them). If
you don’t have them, get them at:

http://starship.python.net/crew/mhammond/

From the download directory grab the IPython-XXX.zip file (but the popular WinZip handles
.tar.gz files perfectly, so use that if you have WinZip and want a smaller download).

Unzip it and double-click on the setup.py file. A text console should open and proceed to install
IPython in your system. If all goes well, that’s all you need to do. You should now have an IPython
entry in your Start Menu with links to IPython and the manuals.

If you don’t have PythonWin, you can:

• Copy the doc\ directory wherever you want it (it contains the manuals in HTML and PDF).

• Create a shortcut to the main IPython script, located in the Scripts subdirectory of your
Python installation directory.

These steps are basically what the auto-installer does for you.

IPython tries to install the configuration information in a directory named .ipython located in
your ’home’ directory, which it determines by joining the environment variables HOMEDRIVE and
HOMEPATH. This typically gives something like C:\Documents and Settings\YourUserName, but
your local details may vary. In this directory you will find all the files that configure IPython’s
defaults, and you can put there your profiles and extensions. This directory is automatically added
by IPython to sys.path, so anything you place there can be found by import statements.

2.3 Help access

This is true for Python 2.1 in general (not just for IPython): you should have an environment
variable called PYTHONDOCS pointing to the directory where your Python documentation lives. In
my system it’s /usr/share/doc/python-docs-2.1.1, check your local details or ask your systems
administrator.

You really want to set this variable correctly so that Python’s pydoc-based help system works (it’s
very powerful).

Under Windows it seems that pydoc finds the documentation automatically, so no extra setup
appears necessary.

7

http://starship.python.net/crew/mhammond/

2 INSTALLATION 2.4 Initial configuration comments

2.4 Initial configuration comments

All of ipython’s configuration information, history, logs, is stored in a directory named by default
$HOME/.ipython. You can change this by defining the environment variable IPYTHONDIR, or at
runtime with the command line option -ipythondir.

If all goes well, the first time you run IPython it should automatically create a user copy of the
config directory for you. Go poking around in there to learn more about configuring the system. As
we said, this copy by default will be called $HOME/.ipython

If there is a problem, these are the instructions for manual installation:

1. mkdir $HOME/.ipython

2. Copy all the files in IPython/UserConfig to $HOME/.ipython/, except for the files named
__init__*

3. In $HOME/.ipython, rename all the ipythonrc*.py files by removing the .py extension. They
aren’t really Python files, this is a workaround for a distutils limitation, and normally is done
for you by the auto-installer.

Information on how to further customize the ipythonrc* files and how to build a hierarchy of them
to manage IPython ’profiles’ is provided in the sample files.

The default configuration has most bells and whistles turned on (they’re pretty safe). But there’s
one that may cause problems on some systems: colored prompts and exception handlers.

If when you start IPython the input prompt shows garbage like:
[0;32mIn [[1;32m1[0;32m]: [0;00m
instead of
In [1]:
this means that your terminal doesn’t properly handle color escape sequences.

You can either try using a different terminal emulator program or switching coloring off completely.
To do the latter, edit the file $HOME/.ipython/ipythonrc and set the colors option to the value
’NoColor’ (without quotes).

Terminals that seem to handle the color sequences fine:

• Linux main text console, KDE Konsole, Gnome Terminal, E-term, rxvt.

• CDE terminal (tested under Solaris). This one boldfaces light colors.

• (X)Emacs buffers. See sec.2.5 for more details on using IPython with (X)Emacs.

Terminals with problems:

• Old xterms (at least the version shipped with Mandrake 8.1). They display garbage for certain
colors, haven’t been able to fix it reliably.

• Windows command prompt in Win2k/XP logged into a Linux machine via telnet or ssh. Same
problems as the xterms above.

8

2 INSTALLATION 2.5 (X)Emacs users

• Windows native command prompt in Win2k/XP for local execution. Colors do not work at
all. The installer is set up to disable colors by default. If you have a terminal replacement
which can handle colors, you can turn them back on. Test it by typing ’colors Linux’ at the
prompt: if you get garbage on screen, go back with ’colors NoColor’.

Currently available color schemes for prompts and exceptions:

• NoColor: uses no color escapes at all (all escapes are empty “ “ strings). This ’scheme’ is thus
fully safe to use in any terminal.

• Linux: works well in linux console type environments: dark background with light fonts.

• LightBG: similar to Linux but swaps dark/light colors to be more readable in light background
terminals.

In the future, more schemes may be implemented (if you add one, send it in. They are easy to write,
look at the code in ultraTB.py and Prompts.py).

2.5 (X)Emacs users

To the best of my knowledge, the comments below apply both to GNU Emacs and to XEmacs2.

In X/Emacs we get the following types of terminals (as returned by os.environ[’TERM’]):

• Term buffers (M-x term): ’eterm’ terminal type.

• Shell buffers (M-x shell): ’emacs’ terminal type (or ’dumb’ in some versions).

• Python interpreter (comint) buffers (C-c !): ’emacs’ terminal type (or ’dumb’ in some ver-
sions).

2.5.1 Color support

All of these terminal types will support coloring of prompts and tracebacks, even though only light
versions of colors seem to be displayed. I may write an Emacs-specific color scheme in the future
(contributions welcome, look at ultraTB.py for details). But for this color support to work properly,
you must first copy the following lines to your .emacs file:

; Customizations for IPython

(defun activate-ansi-colors ()
(require ’ansi-color)
(ansi-color-for-comint-mode-on))

(add-hook ’comint-mode-hook ’activate-ansi-colors)

(add-hook ’shell-mode-hook ’activate-ansi-colors)

2This section, and the lisp code in it, owes a lot to the kind help and comments by Milan Zamazal
<pdm@zamazal.org>. Many thanks to him.

9

3 UPGRADING FROM A PREVIOUS VERSION

; Set IPython to be the python command and give it arguments

(setq py-python-command "ipython")

(setq py-python-command-args
(cond
((eq frame-background-mode ’dark)
’("--colors" "Linux"))
((eq frame-background-mode ’light)
’("--colors" "LightBG"))
(t ; default (backg-mode isn’t always set by XEmacs)
’("--colors" "LightBG"))
))

You can customize the above to suit your personal preferences.

2.5.2 Name completion

’eterm’ buffers support TAB name completion like a normal terminal, but ’emacs’ and ’dumb’ ones
do not support it well, because Emacs itself takes control of line input. You will thus lose full name
completion in an IPython buffer started via C-c !. All other features of IPython will work normally.

Still, name completion works to some extent: the completions are not printed when you hit TAB,
instead you must hit Return after TAB (giving a SyntaxError, of course). At this point you get a
printout of the possible completions and you can get your previous line with Ctrl-UpArrow. Not
perfect, but better than nothing.

I know it’s clumsy, but so far efforts to fix this have failed. Any Emacs gurus out there who can
think of a clean way to fix this are encouraged to contact the developers at the addresses given in sec.
14. The issue (I think) boils down to the following: Emacs only prints the contents of a command
received by its sub-process in a comint buffer when it gets an EOL (or more precisely, the result of
comint-send-input). At that point it prints out all the buffered contents from the subprocess. But
for normal TAB completion to work, one needs to print the list of completions at the current cursor
position (possibly completing part of the line) before the command is finished. So a kind of catch-22
situation arises. As I said, all ideas/fixes are welcome from the Emacs gurus out there.

3 Upgrading from a previous version

If you are upgrading from a previous version of IPython, after doing the routine installation described
in sec.2, you may want to call IPython with the -upgrade option the first time you run your new
copy. This will automatically update your configuration directory while preserving copies of your
old files. You can then later merge back any personal customizations you may have made into the
new files. It is a good idea to do this as there may be new options available in the new configuration
files which you will not have.

Under Windows, if you don’t know how to call python scripts with arguments from a command
line, simply delete the old config directory and IPython will make a new one. Win2k and WinXP
users will find it in C:\Documents and Settings\YourUserName\.ipython, and Win 9x users under
C:\Program Files\IPython\.ipython.

10

4 COMMAND-LINE USE

4 Command-line use

You start IPython with the command:

$ ipython [options] files

If invoked with no options, it executes all the files listed in sequence and drops you into the interpreter
while still acknowledging any options you may have set in your ipythonrc file. This behavior is
different from standard Python, which when called as python -i will only execute one file and
ignore your configuration setup.

Please note that some of the configuration options are not available at the command line, simply
because they are not practical here. Look into your ipythonrc configuration file for details on those.
This file typically installed in the $HOME/.ipython directory. For Windows users, $HOME resolves to
C:\\Documents and Settings\\YourUserName in most instances. In the rest of this text, we will
refer to this directory as IPYTHONDIR.

4.1 Options

All options can be abbreviated to their shortest non-ambiguous form and are case-sensitive. One or
two dashes can be used. Some options have an alternate short form, indicated after a |.

Most options can also be set from your ipythonrc configuration file. See the provided example for
more details on what the options do. Options given at the command line override the values set in
the ipythonrc file.

All options with a no| prepended can be specified in ’no’ form (-nooption instead of -option) to
turn the feature off.

-help: print a help message and exit.

-no|automagic: make magic commands automatic (without needing their first character to be @).
Type @magic at the IPython prompt for more information.

-no|banner: Print the initial information banner (default on).

-cache_size|cs <n>: size of the output cache (maximum number of entries to hold in memory).
The default is 1000, you can change it permanently in your config file. Setting it to 0
completely disables the caching system, and the minimum value accepted is 20 (if you
provide a value less than 20, it is reset to 0 and a warning is issued) This limit is defined
because otherwise you’ll spend more time re-flushing a too small cache than working.

-classic|cl: Gives IPython a similar feel to the classic Python prompt.

-colors|c <scheme>: Color scheme for prompts and exception reporting. Currently implemented:
NoColor, Linux and LightBG.

-no|debug: Show information about the loading process. Very useful to pin down problems with
your configuration files or to get details about session restores.

-no|deep_reload: IPython can use the deep_reload module which reloads changes in modules
recursively (it replaces the reload() function, so you don’t need to change anything to
use it). deep_reload() forces a full reload of modules whose code may have changed,
which the default reload() function does not.

11

4 COMMAND-LINE USE 4.1 Options

When deep reload is off, IPython will use the normal reload(), but deep reload will
still be available as dreload(). This feature is off by default [which means that you have
both normal reload() and dreload()].

-ipythondir <name>: name of your IPython configuration directory IPYTHONDIR. This can also be
specified through the environment variable IPYTHONDIR.

-log|l: generate a log file of all input. Defaults to $IPYTHONDIR/log. You can use this to later
restore a session by loading your logfile as a file to be executed with option -logplay
(see below).

-logfile|lf <name>: specify the name of your logfile.

-logplay|lp <name>: you can replay a previous log. For restoring a session as close as possible
to the state you left it in, use this option (don’t just run the logfile). With -logplay,
IPython will try to reconstruct the previous working environment in full, not just execute
the commands in the logfile.

When a session is restored, logging is automatically turned on again with the name of
the logfile it was invoked with (it is read from the log header). So once you’ve turned
logging on for a session, you can quit IPython and reload it as many times as you want
and it will continue to log its history and restore from the beginning every time.

Caveats: there are limitations in this option. The history variables _i*,_* and _dh don’t
get restored properly. In the future we will try to implement full session saving by writing
and retrieving a ’snapshot’ of the memory state of IPython. But our first attempts failed
because of inherent limitations of Python’s Pickle module, so this may have to wait.

-no|messages: Print messages which IPython collects about its startup process (default on).

-no|pdb: Automatically call the pdb debugger after every uncaught exception. If you are used to
debugging using pdb, this puts you automatically inside of it after any call (either in
IPython or in code called by it) which triggers an exception which goes uncaught.

-no|pprint: ipython can optionally use the pprint (pretty printer) module for displaying results.
pprint tends to give a nicer display of nested data structures. If you like it, you can turn
it on permanently in your config file (default off).

-profile|p <name>: assume that your config file is ipythonrc-<name> (looks in current dir first,
then in IPYTHONDIR). This is a quick way to keep and load multiple config files for
different tasks, especially if you use the include option of config files. You can keep a
basic IPYTHONDIR/ipythonrc file and then have other ’profiles’ which include this one
and load extra things for particular tasks. For example:

1. $HOME/.ipython/ipythonrc : load basic things you always want.

2. $HOME/.ipython/ipythonrc-math : load (1) and basic math-related modules.

3. $HOME/.ipython/ipythonrc-numeric : load (1) and Numeric and plotting modules.

Since it is possible to create an endless loop by having circular file inclusions, IPython
will stop if it reaches 15 recursive inclusions.

12

4 COMMAND-LINE USE 4.1 Options

-prompt_in1|pi1 <string>: Specify the string used for input prompts. Note that if you are using
numbered prompts, the number is represented with a ’%n’ in the string. Don’t forget to
quote strings with spaces embedded in them. Default: ’In [%n]:’

-prompt_in2|pi2 <string>: Similar to the previous option, but used for the continuation prompts.
In this case, the number (%n) is replaced by as many dots as there are digits in the number
(so you can have your continuation prompt aligned with your input prompt). Default:
’ .%n.:’ (note three spaces at the start for alignment with ’In [%n]’)

-prompt_out|po <string>: String used for output prompts, also uses numbers like prompt_in1.
Default: ’Out[%n]:’

-quick: start in bare bones mode (no config file loaded).

-rcfile <name>: name of your IPython resource configuration file. Normally IPython loads ipythonrc
(from current directory) or IPYTHONDIR/ipythonrc.

If the loading of your config file fails, IPython starts with a bare bones configuration (no
modules loaded at all).

-no|readline: use the readline library, which is needed to support name completion and command
history, among other things. It is enabled by default, but may cause problems for users
of X/Emacs in Python comint or shell buffers.

Note that X/Emacs ’eterm’ buffers (opened with M-x term) support IPython’s readline
and syntax coloring fine, only ’emacs’ (M-x shell and C-c !) buffers do not.

-screen_length|sl <n>: number of lines of your screen. This is used to control printing of very
long strings. Strings longer than this number of lines will be sent through a pager instead
of directly printed.

The default value for this is 0, which means IPython will auto-detect your screen size
every time it needs to print certain potentially long strings (this doesn’t change the
behavior of the ’print’ keyword, it’s only triggered internally). If for some reason this
isn’t working well (it needs curses support), specify it yourself. Otherwise don’t change
the default.

-separate_in|si <string>: separator before input prompts. Default: ’\n’

-separate_out|so <string>: separator before output prompts. Default: nothing.

-separate_out2|so2 <string>: separator after output prompts. Default: nothing.

For these three options, use the value 0 to specify no separator.

-nosep: shorthand for ’-SeparateIn 0 -SeparateOut 0 -SeparateOut2 0’. Simply removes
all input/output separators.

-upgrade: allows you to upgrade your IPYTHONDIR configuration when you install a new version of
IPython. Since new versions may include new command line options or example files,
this copies updated ipythonrc-type files. However, it backs up (with a .old extension)
all files which it overwrites so that you can merge back any customizations you might
have in your personal files.

13

5 INTERACTIVE USE

-Version: print version information and exit.

-xmode <modename>: Mode for exception reporting. Valid modes: Plain and Verbose. See the
sample ipythonrc file for details on this option.

5 Interactive use

Warning: IPython relies on the existence of a global variable called __IP which controls the shell
itself. If you redefine __IP to anything, bizarre behavior will quickly occur.

Other than the above warning, IPython is meant to work as a drop-in replacement for the standard
interactive interpreter. As such, any code which is valid python should execute normally under
IPython (cases where this is not true should be reported as bugs). It does, however, offer many
features which are not available at a standard python prompt. What follows is a list of these.

5.1 Magic command system

IPython will treat any line whose first character is a @ as a special call to a ’magic’ function. These
allow you to control the behavior of IPython itself, plus a lot of system-type features. They are all
prefixed with a @ character, but parameters are given without parentheses or quotes.

Example: typing ’@cd mydir’ (without the quotes) changes you working directory to ’mydir’, if
it exists.

If you have ’automagic’ enabled (in your ipythonrc file, via the command line option -automagic
or with the @automagic function), you don’t need to type in the @ explicitly. IPython will scan its
internal list of magic functions and call one if it exists. With automagic on you can then just type
’cd mydir’ to go to directory ’mydir’. The automagic system has the lowest possible precedence
in name searches, so defining an identifier with the same name as an existing magic function will
shadow it for automagic use. You can still access the shadowed magic function by explicitly using
the @ character at the beginning of the line.

An example (with automagic on) should clarify all this:

In [1]: cd ipython # @cd is called by automagic
/usr/local/home/fperez/ipython
In [2]: cd=1 # now cd is just a variable
In [3]: cd .. # and doesn’t work as a function anymore
--
File "<console>", line 1
cd ..
^
SyntaxError: invalid syntax

In [4]: @cd .. # but @cd always works
/usr/local/home/fperez
In [5]: del cd # if you remove the cd variable
In [6]: cd ipython # automagic can work again
/usr/local/home/fperez/ipython

14

5 INTERACTIVE USE 5.1 Magic command system

You can define your own magic functions to extend the system. The following is a snippet of code
which shows how to do it. It is provided as file example-magic.py in your ipython configuration
directory, typically $HOME/.ipython/:

"""Example of how to define a magic function for extending IPython.

The name of the function *must* begin with magic_. IPython mangles it so
that magic_foo() becomes available as @foo.

The argument list must be *exactly* (self,parameter_s=’’).

The single string parameter_s will have the user’s input. It is the magic
function’s responsability to parse this string.

That is, if the user types
>>>@foo a b c

The followinng internal call is generated:
self.magic_foo(parameter_s=’a b c’).

To have any functions defined here available as magic functions in your
IPython environment, import this file in your configuration file with an
execfile = this_file.py statement. See the details at the end of the sample
ipythonrc file. """

fisrt define a function with the proper form:
def magic_foo(self,parameter_s=’’):

"""My very own magic!. (Use docstrings, IPython reads them)."""
print ’Magic function. Passed parameter is between < >: <’+parameter_s+’>’
print ’The self object is:’,self

Add the new magic function to the class dict:
from IPython.iplib import InteractiveShell
InteractiveShell.magic_foo = magic_foo

And remove the global name to keep global namespace clean. Don’t worry, the
copy bound to IPython stays, we’re just removing the global name.
del magic_foo

#********************** End of file <example-magic.py> ***********************

You can also define your own aliased names for magic functions. In your ipythonrc file, placing a
line like:

execute __IP.magic_cl = __IP.magic_clear

will define @cl as a new name for @clear.

Type @magic for more information, including a list of all available magic functions at any time and
their docstrings. You can also type @magic_function_name? (see sec. 5.3 for information on the
’?’ system) to get information about any particular magic function you are interested in.

15

5 INTERACTIVE USE 5.1 Magic command system

5.1.1 Magic commands

The rest of this section is automatically generated for each release from the docstrings in the IPython
code. Therefore the formatting is somewhat minimal, but this method has the advantage of having
information always in sync with the code.

A list of all the magic commands available in IPython’s default installation follows. This is similar
to what you’ll see by simply typing @magic at the prompt, but that will also give you information
about magic commands you may have added as part of your personal customizations.

@Pprint: Toggle pretty printing on/off.

@abort: Raise a SystemExit exception.

In a normal IPython session this just exits IPython, but if IPython is running embedded inside other
Python code, the SystemExit exception may propagate all the way up and fully exit the enclosing
program.

@alias: Define an alias for a system command.

’@alias alias name cmd’ defines ’alias name’ as an alias for ’cmd’

Then, typing ’@alias_name params’ will execute the system command ’cmd params’ (from your
underlying operating system).

You can also define aliases with parameters using %s specifiers (one per parameter):

In [1]: alias parts echo first %s second %s
In [2]: @parts A B
first A second B
In [3]: @parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

If called with no parameters, @alias prints the current alias table.

@automagic: Make magic functions callable without having to type the initial @.

Toggles on/off (when off, you must call it as @automagic, of course). Note that magic functions
have lowest priority, so if there’s a variable whose name collides with that of a magic fn, automagic
won’t work for that function (you get the variable instead). However, if you delete the variable (del
var), the previously shadowed magic function becomes visible to automagic again.

@cat: Alias to the system command ’cat’

@cd: Change the current working directory.

This command automatically maintains an internal list of directories you visit during your IPython
session, in the variable dh. The command @dhist shows this history nicely formatted.

cd -<n> changes to the n-th directory in the directory history.

cd - changes to the last visited directory.

Note that !cd doesn’t work for this purpose because the shell where !command runs is immediately
discarded after executing ’command’.

@clear: Alias to the system command ’clear’

16

5 INTERACTIVE USE 5.1 Magic command system

@colors: Switch color scheme for the prompts and exception handlers.

Currently implemented schemes: NoColor, Linux, LightBG.

Color scheme names are not case-sensitive.

@config: Show IPython’s internal configuration.

@dhist: Print your history of visited directories.

@dhist -> print full history
@dhist n -> print last n entries only
@dhist n1 n2 -> print entries between n1 and n2 (n1 not included)

This history is automatically maintained by the @cd command, and always available as the global
list variable dh. You can use @cd -<n> to go to directory number <n>.

@dirs: Return the current directory stack.

@doc: Print the docstring for an object.

If the given object is a class, it will print both the class and the constructor docstrings.

@env: List environment variables.

@file: View the source file for an object through a pager.

The file opens at the line the object definition begins. IPython will honor the environment variable
PAGER if set, and otherwise will do its best to print the file in a convenient form.

@hist: Print input history (i<n> variables), with most recent last.

@hist [-n] -> print at most 40 inputs (some may be multi-line)
@hist [-n] n -> print at most n inputs
@hist [-n] n1 n2 -> print inputs between n1 and n2 (n2 not included)

Each input’s number <n> is shown, and is accessible as the automatically generated variable i<n>.
Multi-line statements are printed starting at a new line for easy copy/paste.

If option -n is used, input numbers are not printed. This is useful if you want to get a printout of
many lines which can be directly pasted into a text editor.

This feature is only available if numbered prompts are in use.

@lc: Alias to the system command ’ls -F -o –color’

@ld: List (in color) things which are directories or links to directories.

@less: Alias to the system command ’less’

@lf: List (in color) things which are normal files.

@ll: List (in color) things which are symbolic links.

@logoff: Temporarily stop logging.

You must have previously started logging.

@logon: Restart logging.

17

5 INTERACTIVE USE 5.1 Magic command system

This function is for restarting logging which you’ve temporarily stopped with @logoff. For starting
logging for the first time, you must use the @logstart function, which allows you to specify an
optional log filename.

@logstart: Start logging anywhere in a session.

@logstart [log name [log mode]]

If no name is given, it defaults to a file named ’log’ in your IPYTHONDIR directory, in ’rotate’
mode (see below).

’@logstart name’ saves to file ’name’ in ’backup’ mode. It saves your history up to that point and
then continues logging.

@logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):
over: overwrite existing log.
backup: rename (if exists) to name and start name.
append: well, that says it.
rotate: create rotating logs name.1 , name.2 , etc.

@logstate: Print the status of the logging system.

@ls: Alias to the system command ’ls -F’

@lsmagic: List currently available magic functions.

@lx: List (in color) things which are executable.

@macro: Define a set of input lines as a macro for future re-execution.

Usage:
@macro name n1:n2 n3:n4 ... n5 .. n6 ...

This will define a global variable called ‘name‘ which is a string made of joining the slices and lines
you specify (n1,n2,... numbers above) from your input history into a single string. This variable acts
like an automatic function which re-executes those lines as if you had typed them. You just type
’name’ at the prompt and the code executes.

Note that the slices use the standard Python slicing notation (5:8 means include lines numbered
5,6,7).

For example, if your history contains:

44: x=1
45: y=3
46: z=x+y
47: print x
48: a=5
49: print ’x’,x,’y’,y

you can create a macro with lines 44 through 47 (included) and line 49 called my macro with:

In [51]: @macro my macro 44:48 49

Now, typing ‘my macro‘ will re-execute all this code in one pass.

18

5 INTERACTIVE USE 5.1 Magic command system

The macro is a simple object which holds its value in an attribute, but the printing system checks
for macros and executes them as code instead of printing them.

@magic: Print information about the magic function system.

@mkdir: Alias to the system command ’mkdir’

@mv: Alias to the system command ’mv’

@oinfo: Provide detailed information about an object.

oinfo object is just a synonym for object? or ?object.

@p: Just a short alias for Python’s ’print’.

@pdb: Toggle the calling of the pdb interactive debugger.

When an exception is triggered, IPython can optionally call the interactive pdb debugger after the
traceback printout. @pdb toggles this feature on and off.

@pdef: Print the definition header for any callable object.

If the object is a class, print the constructor information.

@pfile: Same as @file.

In Python 2.2 file() is now a builtin, so with automagic on, ’file’ doesn’t work anymore. This alias
is provided for convenience.

@popd: Change to directory popped off the top of the stack.

@profile: Print your currently active profile.

@pushd: Place the current dir on stack and change directory.

Usage:
@pushd [’dirname’]

@pushd with no arguments does a @pushd to your home directory.

@pwd: Return the current working directory path.

@reset: Resets the namespace by removing all names defined by the user.

Input/Output history are left around in case you need them.

@rm: Alias to the system command ’rm -i’

@rmdir: Alias to the system command ’rmdir’

@rmf: Alias to the system command ’rm -f’

@run: Run the named file inside IPython as a program.

Usage:
@run [-n] file [args]

Parameters after the filename are passed as command-line arguments to the program (put in
sys.argv). Then, control returns to IPython’s prompt.

The file is executed in a namespace initially consisting only of name ==’ main ’ and sys.argv
constructed as indicated. It thus sees its environment as if it were being run as a stand-alone
program. But after execution, the IPython interactive namespace gets updated with all variables

19

5 INTERACTIVE USE 5.2 Access to the standard Python help

defined in the program (except for name and sys.argv). This allows for very convenient loading
of code for interactive work, while giving each program a ’clean sheet’ to start in.

If the -n option is used, name is NOT set to ’ main ’. This allows running scripts and reloading
the definitions in them without triggering a call to testing routines which are often wrapped in an
’if name ==” main ” clause.

@runlog: Run files as logs.

Usage:
@runlog file1 file2 ...

Run the named files (treating them as log files) in sequence inside the interpreter, and return to the
prompt. This is much slower than @run because each line is executed in a try/except block, but it
allows running files with syntax errors in them.

Normally IPython will guess when a file is one of its own logfiles, so you can typically use @run even
for logs. This shorthand allows you to force any file to be treated as a log file.

@source: Show the source code for an object.

@who: Print all interactive variables, with some minimal formatting.

This excludes executed names loaded through your configuration file and things which are internal
to IPython.

This is deliberate, as typically you may load many modules and the purpose of @who is to show you
only what you’ve manually defined.

@who_ls: Return a list of all interactive variables.

@whos: Like @who, but gives some extra information about each variable.

For all variables, the type is printed. Additionally it prints:
- For ,[],(): their length.
- Everything else: a string representation, snipping their middle if too long.

@xmode: Switch modes for the exception handlers. Valid modes: Plain, Verbose.

If called without arguments, acts as a toggle.

5.2 Access to the standard Python help

As of Python 2.1, a help system is available with access to object docstrings and the Python manuals.
Simply type ’help’ (no quotes) to access it. You can also type help(object) to obtain information
about a given object, and help(’keyword’) for information on a keyword. As noted in sec. 2.3, you
need to properly configure your environment variable PYTHONDOCS for this feature to work correctly.

5.3 Dynamic object information

Typing ?word or word? prints detailed information about an object. If certain strings in the object
are too long (docstrings, code, etc.) they get snipped in the center for brevity. This system gives
access variable types and values, full source code for any object (if available), function prototypes
and other useful information.

20

5 INTERACTIVE USE 5.4 Readline-based features

Typing ??word or word?? gives access to the full information without snipping long strings. Long
strings are sent to the screen through the less pager if longer than the screen and printed otherwise.
On systems lacking the less command, IPython uses a very basic internal pager.

The following magic functions are particularly useful for gathering information about your work-
ing environment. You can get more details by typing @magic or querying them individually (use
@function_name? with or without the @), this is just a summary:

@doc <object>: Print the docstring for an object. If the given object is a class, it will print both
the class and the constructor docstrings.

@pdef <object>: Print the definition header for any callable object. If the object is a class, print
the constructor information.

@source <object>: Show the source code for an object.

@pfile <object>: Show the entire source file where an object was defined via a pager, opening it
at the line where the object definition begins.

@who/@whos: These functions give information about identifiers you have defined interactively (not
things you loaded or defined in your configuration files). @who just prints a list of iden-
tifiers and @whos prints a table with some basic details about each identifier.

Note that the dynamic object information functions (?/??, @doc, @file, @pdef, @source) give
you access to documentation even on things which are not really defined as separate identifiers. Try
for example typing {}.get? or after doing import os, type os.path.abspath??. This feature can
be extremely useful.

5.4 Readline-based features

These features require the GNU readline library, so they won’t work if your Python lacks readline
support (as is the case under Windows). We will first describe the default behavior IPython uses,
and then how to change it to suit your preferences.

5.4.1 Command line completion

At any time, hitting TAB will complete any available python commands or variable names, and show
you a list of the possible completions if there’s no unambiguous one. It will also complete filenames
in the current directory if no python names match what you’ve typed so far.

5.4.2 Search command history

IPython provides two ways for searching through previous input and thus reduce the need for repet-
itive typing:

1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through
only the history items that match what you’ve typed so far. If you use Ctrl-p/Ctrl-n at a
blank prompt, they just behave like normal arrow keys.

2. Hit Ctrl-r: opens a search prompt. Begin typing and the system searches your history for
lines that contain what you’ve typed so far, completing as much as it can.

21

5 INTERACTIVE USE 5.5 Session logging and restoring

5.4.3 Persistent command history across sessions

IPython will save your input history when it leaves and reload it next time you restart it.

5.4.4 Customizing readline behavior

All these features are based on the GNU readline library, which has an extremely customizable
interface. Normally, readline is configured via a file which defines the behavior of the library; the
details of the syntax for this can be found in the readline documentation available with your system
or on the Internet. IPython doesn’t read this file (if it exists) directly, but it does support passing
to readline valid options via a simple interface. In brief, you can customize readline by setting the
following options in your ipythonrc configuration file (note that these options can not be specified
at the command line):

readline_parse_and_bind: this option can appear as many times as you want, each time defining a
string to be executed via a readline.parse_and_bind() command. The syntax for valid
commands of this kind can be found by reading the documentation for the GNU readline
library, as these commands are of the kind which readline accepts in its configuration
file.

readline_remove_delims: a string of characters to be removed from the default word-delimiters
list used by readline, so that completions may be performed on strings which contain
them. Do not change the default value unless you know what you’re doing.

readline_omit__names: when tab-completion is enabled, hitting <tab> after a ’.’ in a name will
complete all attributes of an object, including all the special methods whose names
include double underscores (like __getitem__ or __class__). If you’d rather not see
these names by default, you can set this option to 1. Note that even when this option
is set, you can still see those names by explicitly typing a _ after the period and hitting
<tab>: ’name._<tab>’ will always complete attribute names starting with ’_’.

This option is off by default so that new users see all attributes of any objects they are
dealing with.

You will find the default values along with a corresponding detailed explanation in your ipythonrc
file.

5.5 Session logging and restoring

You can log all input from a session either by starting IPython with the command line switches
-log or -logfile (see sec. 4.1)or by activating the logging at any moment with the magic function
@logstart.

Log files can later be reloaded with the -logplay option and IPython will attempt to ’replay’ the
log by executing all the lines in it, thus restoring the state of a previous session. This feature is not
quite perfect, but can still be useful in many cases.

The log files can also be used as a way to have a permanent record of any code you wrote while
experimenting. Log files are regular text files which you can later open in your favorite text editor
to extract code or to ’clean them up’ before using them to replay a session.

22

5 INTERACTIVE USE 5.6 System shell access

The @logstart function for activating logging in mid-session is used as follows:

@logstart [log_name [log_mode]]

If no name is given, it defaults to a file named ’log’ in your IPYTHONDIR directory, in ’rotate’
mode (see below).

’@logstart name’ saves to file ’name’ in ’backup’ mode. It saves your history up to that point
and then continues logging.

@logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):

over: overwrite existing log_name.

backup: rename (if exists) to log_name~ and start log_name.

append: well, that says it.

rotate: create rotating logs log_name.1~, log_name.2~, etc.

The @logoff and @logon functions allow you to temporarily stop and resume logging to a file which
had previously been started with @logstart. They will fail (with an explanation) if you try to use
them before logging has been started.

5.6 System shell access

Any input line beginning with a ! character is passed verbatim (minus the !, of course) to the
underlying operating system. For example, typing !ls will run ’ls’ in the current directory.

5.7 System command aliases

The @alias magic function and the alias option in the ipythonrc configuration file allow you to
define magic functions which are in fact system shell commands. These aliases can have parameters.

’@alias alias_name cmd’ defines ’alias_name’ as an alias for ’cmd’

Then, typing ’@alias_name params’ will execute the system command ’cmd params’ (from your
underlying operating system).

You can also define aliases with parameters using %s specifiers (one per parameter). The following
example defines the @parts function as an alias to the command ’echo first %s second %s’ where
each %s will be replaced by a positional parameter to the call to @parts:

In [1]: alias parts echo first %s second %s
In [2]: @parts A B
first A second B
In [3]: @parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

If called with no parameters, @alias prints the table of currently defined aliases.

23

5 INTERACTIVE USE 5.8 Recursive reload

5.8 Recursive reload

The @dreload command does a recursive reload of a module: changes made to the module since you
imported will actually be available without having to exit.

5.9 Verbose and colored exception traceback printouts

IPython provides the option to see very detailed exception tracebacks, which can be especially useful
when debugging large programs. You can run any Python file with the @run function to benefit from
these detailed tracebacks. Furthermore, both normal and verbose tracebacks can be colored (if your
terminal supports it) which makes them much easier to parse visually.

See the magic xmode and colors functions for details (just type @magic).

These features are basically a terminal version of Ka-Ping Yee’s cgitb module, now part of the
standard Python library.

5.10 Input caching system

IPython offers numbered prompts (In/Out) with input and output caching. All input is saved and
can be retrieved as variables (besides the usual arrow key recall).

The following GLOBAL variables always exist (so don’t overwrite them!): _i: stores previous input.
_ii: next previous. _iii: next-next previous. _ih : a list of all input _ih[n] is the input from line
n.

Additionally, global variables named _i<n> are dynamically created (<n> being the prompt counter),
such that
_i<n> == _ih[<n>]

For example, what you typed at prompt 14 is available as _i14 and _ih[14].

This allows you to easily cut and paste multi line interactive prompts by printing them out: they
print like a clean string, without prompt characters. You can also manipulate them like regular
variables (they are strings), modify or exec them (typing ’exec _i9’ will re-execute the contents of
input prompt 9).

You can re-execute multiple lines of input easily by assigning a macro name to them (which also
allows you to build a macro out of any number of input lines even if they weren’t contiguous in the
first place). Type @macro? or see sec. 5.1 for more details on the macro system.

A history function @hist allows you to see any part of your input history by printing a range of
the _i variables. Note that inputs which contain magic functions (@) appear in the history with a
prepended comment. This is because they aren’t really valid Python code, so you can’t exec them.

5.11 Output caching system

For output that is returned from actions, a system similar to the input cache exists but using _
instead of _i. Only actions that produce a result (NOT assignments, for example) are cached.
If you are familiar with Mathematica, IPython’s _ variables behave exactly like Mathematica’s %
variables.

24

5 INTERACTIVE USE 5.12 Directory history

The following GLOBAL variables always exist (so don’t overwrite them!):

_ (a single underscore) : stores previous output, like Python’s default interpreter.

__ (two underscores): next previous.

___ (three underscores): next-next previous.

Additionally, global variables named _<n> are dynamically created (<n> being the prompt counter),
such that the result of output <n> is always available as _<n> (don’t use the angle brackets, just the
number, e.g. _21)

This system obviously can potentially put heavy memory demands on your system, since it prevents
Python’s garbage collector from removing any previously computed results. You can control how
many results are kept in memory with the option (at the command line or in your ipythonrc file)
cache_size. If you set it to 0, the system is completely disabled and the prompts revert to the
classic ’> > >’ of normal Python.

5.12 Directory history

Your history of visited directories is kept in the global list _dh, and the magic @cd command can be
used to go to any entry in that list. The @dhist command allows you to view this history.

5.13 Automatic parentheses and quotes

These features were adapted from Nathan Gray’s LazyPython. They are meant to allow less typing
for common situations.

5.13.1 Automatic parentheses

Callable objects (i.e. functions, methods, etc) can be invoked like this (notice the commas between
the arguments):

> > > callable_ob arg1, arg2, arg3

and the input will be translated to this:

--> callable_ob(arg1, arg2, arg3)

You can force automatic parentheses by using ’/’ as the first character of a line. For example:

> > > /globals # becomes ’globals()’

Note that the ’/’ MUST be the first character on the line! This won’t work:

> > > print /globals # syntax error

In most cases the automatic algorithm should work, so you should rarely need to explicitly invoke
/. One notable exception is if you are trying to call a function with a list of tuples as arguments
(the parenthesis will confuse IPython):

In [1]: zip (1,2,3),(4,5,6) # won’t work

25

6 CUSTOMIZATION

but this will work:

In [2]: /zip (1,2,3),(4,5,6)
------> zip ((1,2,3),(4,5,6))
Out[2]= [(1, 4), (2, 5), (3, 6)]

5.13.2 Automatic quoting

You can force automatic quoting of a function’s arguments by using ’,’ as the first character of a
line. For example:

> > > ,my_function /home/me # becomes my_function("/home/me")

Note that the ’,’ MUST be the first character on the line! This won’t work:

> > > x = ,my_function /home/me # syntax error

5.13.3 Notes on usage of these two features

1. IPython tells you that it has altered your command line by displaying the new command line
preceded by -->. e.g.:

In [18]: callable list
-------> callable (list)

2. Whitespace is more important than usual (even for Python!) Arguments to auto-quote functions
cannot have embedded whitespace.

In [21]: ,string.split a b
-------> string.split ("a", "b")
Out[21]= [’a’] # probably not what you wanted
In [22]: string.split ’a b’
-------> string.split (’a b’)
Out[22]= [’a’, ’b’] # quote explicitly and it works.

6 Customization

As we’ve already mentioned, IPython reads a configuration file which can be specified at the com-
mand line (-rcfile) or which by default is assumed to be called ipythonrc. Such a file is looked
for in the current directory where IPython is started and then in your IPYTHONDIR, which allows
you to have local configuration files for specific projects. In this section we will call these types of
configuration files simply rcfiles (short for resource configuration file).

The syntax of an rcfile is one of key-value pairs separated by whitespace, one per line. Lines beginning
with a # are ignored as comments, but comments can not be put on lines with data (the parser is
fairly primitive). Note that these are not python files, and this is deliberate, because it allows us to
do some things which would be quite tricky to implement if they were normal python files.

First, an rcfile can contain permanent default values for almost all command line options (except
things like -help or -Version). However, values you explicitly specify at the command line override
the values defined in the rcfile.

26

6 CUSTOMIZATION 6.1 Sample ipythonrc file

Besides command line option values, the rcfile can specify values for certain extra special options
which are not available at the command line. These options are briefly described below.

Each of these options may appear as many times as you need it in the file.

include <file1> <file2> ...: you can name other rcfiles you want to recursively load up to 15
levels (don’t use the <> brackets in your names!). This feature allows you to define a
’base’ rcfile with general options and special-purpose files which can be loaded only when
needed with particular configuration options. To make this more convenient, IPython
accepts the -profile <name> option (abbreviates to -p <name>) which tells it to look
for an rcfile named ipythonrc-<name>.

import_mod <mod1> <mod2> ...: import modules with ’import <mod1>,<mod2>,...’

import_some <mod> <f1> <f2> ...: import functions with ’from <mod> import <f1>,<f2>,...’

import_all <mod1> <mod2> ...: for each module listed import functions with ’from <mod> import
*’

execute <python code>: give any single-line python code to be executed.

execfile <filename>: execute the python file given with an ’execfile(filename)’ command.
Username expansion is performed on the given names. So if you need any amount of
extra fancy customization that won’t fit in any of the above ’canned’ options, you can
just put it in a separate python file and execute it.

alias <alias_def>: this is equivalent to calling ’@alias <alias_def>’ at the IPython command
line. This way, from within IPython you can do common system tasks without having
to exit it or use the ! escape. IPython isn’t meant to be a shell replacement, but it is
often very useful to be able to do things with files while testing code. This gives you
the flexibility to have within IPython any aliases you may be used to under your normal
system shell.

6.1 Sample ipythonrc file

The default rcfile, called ipythonrc and supplied in your IPYTHONDIR directory contains lots of
comments on all of these options. We reproduce it here for reference:

-*- Mode: Shell-Script -*- Not really, but shows comments correctly
#***
#
Configuration file for IPython -- ipythonrc format
#
The format of this file is simply one of ’key value’ lines.
Lines containing only whitespace at the beginning and then a # are ignored
as comments. But comments can NOT be put on lines with data.

The meaning and use of each key are explained below.

#---

27

6 CUSTOMIZATION 6.1 Sample ipythonrc file

Section: included files

Put one or more *config* files (with the syntax of this file) you want to
include. For keys with a unique value the outermost file has precedence. For
keys with multiple values, they all get assembled into a list which then
gets loaded by IPython.

In this file, all lists of things should simply be space-separated.

This allows you to build hierarchies of files which recursively load
lower-level services. If this is your main ~/.ipython/ipythonrc file, you
should only keep here basic things you always want available. Then you can
include it in every other special-purpose config file you create.

include

#---
Section: prompt control and startup setup

These are mostly things which parallel a command line option of the same
name.

Keys in this section should only appear once. If any key from this section
is encountered more than once, the last value remains, all earlier ones get
discarded.

Auto-magic. This gives you access to all the magic functions without having
to prepend them with an @ sign. If you define a variable with the same name
as a magic function (say who=1), you will need to access the magic function
with @ (@who in this example). However, if later you delete your variable
(del who), you’ll recover the automagic calling form.

Considering that many magic functions provide a lot of shell-like
functionality, automagic gives you something close to a full Python+system
shell environment (and you can extend it further if you want).

automagic 1

Size of the output cache. After this many entries are stored, the cache will
get flushed. Depending on the size of your intermediate calculations, you
may have memory problems if you make it too big, since keeping things in the
cache prevents Python from reclaiming the memory for old results. Experiment
with a value that works well for you.

If you choose cache_size 0 IPython will revert to python’s regular >>>
unnumbered prompt. You will still have _, __ and ___ for your last three

28

6 CUSTOMIZATION 6.1 Sample ipythonrc file

results, but that will be it. No dynamic _1, _2, etc. will be created. If
you are running on a slow machine or with very limited memory, this may
help.

cache_size 1000

Classic mode: Setting ’classic 1’ you lose many of IPython niceties,
but that’s your choice! Classic 1 -> same as IPython -classic.
Note that this is _not_ the normal python interpreter, it’s simply
IPython emulating most of the classic interpreter’s behavior.
classic 0

colors - Coloring option for prompts and traceback printouts.

Currently available schemes: NoColor, Linux, LightBG.

This option allows coloring the prompts and traceback printouts. This
requires a terminal which can properly handle color escape sequences. If you
are having problems with this, use the NoColor scheme (uses no color escapes
at all).

The Linux option works well in linux console type environments: dark
background with light fonts.

LightBG is similar to Linux but swaps dark/light colors to be more readable
in light background terminals.

keep uncommented only the one you want:
colors Linux
#colors LightBG
#colors NoColor

debug 1 -> same as ipython -debug
debug 0

turn off deep_reload() as a substitute for reload() by default. deep_reload()
is still available as dreload() and appears as a builtin.
deep_reload 0

log 1 -> same as ipython -log. This automatically logs to .ipython/log
log 0

Same as ipython -Logfile YourLogfileName.
Don’t use with log 1 (use one or the other)
logfile ’’

nobanner 1 -> same as ipython -nobanner

29

6 CUSTOMIZATION 6.1 Sample ipythonrc file

nobanner 0

nomessages 1 -> same as ipython -nomessages
nomessages 0

Automatically call the pdb debugger after every uncaught exception. If you
are used to debugging using pdb, this puts you automatically inside of it
after any call (either in IPython or in code called by it) which triggers an
exception which goes uncaught.
pdb 0

Enable the pprint module for printing. pprint tends to give a more readable
display (than print) for complex nested data structures.
pprint 1

Prompt strings (see ipython --help for more details).
Use %n to represent the current prompt number, and quote them to protect
spaces.
prompt_in1 ’In [%n]:’

In prompt_in2, %n is replaced by as many dots as there are digits in the
current value of %n.
prompt_in2 ’ .%n.:’

prompt_out ’Out[%n]:’

quick 1 -> same as ipython -quick
quick 0

Use the readline library (1) or not (0). Most users will want this on, but
if you experience strange problems with line management (mainly when using
IPython inside Emacs buffers) you may try disabling it. Not having it on
prevents you from getting command history with the arrow keys, searching and
name completion using TAB.

readline 1

Screen Length: number of lines of your screen. This is used to control
printing of very long strings. Strings longer than this number of lines will
be paged with the less command instead of directly printed.

The default value for this is 0, which means IPython will auto-detect your
screen size every time it needs to print. If for some reason this isn’t
working well (it needs curses support), specify it yourself. Otherwise don’t
change the default.

30

6 CUSTOMIZATION 6.1 Sample ipythonrc file

screen_length 0

Prompt separators for input and output.
Use \n for newline explicitly, without quotes.
Use 0 (like at the cmd line) to turn off a given separator.

The structure of prompt printing is:
(SeparateIn)Input....
(SeparateOut)Output...
(SeparateOut2), # that is, no newline is printed after Out2
By choosing these you can organize your output any way you want.

separate_in \n

separate_out 0

separate_out2 0

’nosep 1’ is a shorthand for ’-SeparateIn 0 -SeparateOut 0 -SeparateOut2 0’.
Simply removes all input/output separators, overriding the choices above.
nosep 0

Same as ipython -session YourSessionName
session ’’

xmode - Exception reporting mode. Valid modes: Plain, Verbose.

Plain is similar to python’s normal traceback printing.

Verbose is a very detailed mode (a terminal port of Ka-Ping Yee’s cgitb
module, standard as of Python 2.2) which gives gobs of internal
information. It basically dissects and dumps the entire state of Python when
an exception is triggered. This can be very useful if you are doing tricky
debugging work.

#xmode Plain
xmode Verbose

#---
Section: Readline configuration (readline is not available for MS-Windows)

This is done via the following options:

i. readline_parse_and_bind: this option can appear as many times as you
want, each time defining a string to be executed via a
readline.parse_and_bind() command. The syntax for valid commands of this
kind can be found by reading the documentation for the GNU readline library,

31

6 CUSTOMIZATION 6.1 Sample ipythonrc file

as these commands are of the kind which readline accepts in its
configuration file.

The TAB key can be used to complete names at the command line in one of two
ways: ’complete’ and ’menu-complete’. The difference is that ’complete’ only
completes as much as possible while ’menu-complete’ cycles through all
possible completions. Leave the one you prefer uncommented.

readline_parse_and_bind tab: complete
#readline_parse_and_bind tab: menu-complete

This binds Control-l to printing the list of all possible completions when
there is more than one (what ’complete’ does when hitting TAB twice, or at
the first TAB if show-all-if-ambiguous is on)
readline_parse_and_bind "\C-l": possible-completions

This forces readline to automatically print the above list when tab
completion is set to ’complete’. You can still get this list manually by
using the key bound to ’possible-completions’ (Control-l by default) or by
hitting TAB twice. Turning this on makes the printing happen at the first
TAB.
readline_parse_and_bind set show-all-if-ambiguous on

If you have TAB set to complete names, you can rebind any key (Control-o by
default) to insert a true TAB character.
readline_parse_and_bind "\C-o": tab-insert

Bindings for incremental searches in the history. These searches use the
string typed so far on the command line and search anything in the previous
input history containing them.
readline_parse_and_bind "\C-r": reverse-search-history
readline_parse_and_bind "\C-s": forward-search-history

Bindings for completing the current line in the history of previous
commands. This allows you to recall any previous command by typing its first
few letters and hitting Control-p, bypassing all intermediate commands which
may be in the history (much faster than hitting up-arrow 50 times!)
readline_parse_and_bind "\C-p": history-search-backward
readline_parse_and_bind "\C-n": history-search-forward

ii. readline_remove_delims: a string of characters to be removed from the
default word-delimiters list used by readline, so that completions may be
performed on strings which contain them. Do not change the default value
unless you know what you’re doing.
readline_remove_delims -/’"[]{}

#"’ -- just to fix emacs coloring which gets confused by unmatched quotes.

32

6 CUSTOMIZATION 6.1 Sample ipythonrc file

iii. readline_omit__names: normally hitting <tab> after a ’.’ in a name will
complete all attributes of an object, including all the special methods
whose names inlclude double underscores (like __getitem__ or __class__). If
you’d rather not see these names by default, you can set this option to
1. Note that even when this option is set, you can still see those names by
explicitly typing a _ after the period and hitting <tab>: ’name._<tab>’ will
always complete attribute names starting with ’_’.

This option is off by default so that new users see all attributes of any
objects they are dealing with.

readline_omit__names 0

#---
Section: modules to be loaded with ’import ...’

List, separated by spaces, the names of the modules you want to import

Example:
import_mod sys os
will produce internally the statements
import sys
import os

Each import is executed in its own try/except block, so if one module
fails to load the others will still be ok.

import_mod

#---
Section: modules to import some functions from: ’from ... import ...’

List, one per line, the modules for which you want only to import some
functions. Give the module name first and then the name of functions to be
imported from that module.

Example:
import_some struct pack unpack
will produce internally the statement
from struct import pack,unpack

If you have more than one modules_some line, each gets its own try/except
block (like modules, see above).

import_some

#---
Section: modules to import all from : ’from ... import *’

33

6 CUSTOMIZATION 6.1 Sample ipythonrc file

List (same syntax as import_mod above) those modules for which you want to
import all functions. Remember, this is a potentially dangerous thing to do,
since it is very easy to overwrite names of things you need. Use with
caution.

Example:
import_all sys os
will produce internally the statements
from sys import *
from os import *

As before, each will be called in a separate try/except block.

import_all

#---
Section: Python code to execute.

Put here code to be explicitly executed (keep it simple!)
Put one line of python code per line. All whitespace is removed (this is a
feature, not a bug), so don’t get fancy building loops here.
This is just for quick convenient creation of things you want available.

Example:
execute x = 1
execute print ’hello world’; y = z = ’a’
will produce internally
x = 1
print ’hello world’; y = z = ’a’
and each *line* (not each statement, we don’t do python syntax parsing) is
executed in its own try/except block.

execute

Note for the adventurous: you can use this to define your own names for the
magic functions, by playing some namespace tricks:

execute __IP.magic_cl = __IP.magic_clear

defines @cl as a new name for @clear.

#---
Section: Pyhton files to load and execute.

Put here the full names of files you want executed with execfile(file). If
you want complicated initialization, just write whatever you want in a
regular python file and load it from here.

34

6 CUSTOMIZATION 6.1 Sample ipythonrc file

Filenames defined here (which *must* include the extension) are searched for
through all of sys.path. Since IPython adds your .ipython directory to
sys.path, they can also be placed in your .ipython dir and will be
found. Otherwise (if you want to execute things not in .ipyton nor in
sys.path) give a full path (you can use ~, it gets expanded)

Example:
execfile file1.py ~/file2.py
will generate
execfile(’file1.py’)
execfile(’_path_to_your_home/file2.py’)

As before, each file gets its own try/except block.

execfile

If you are feeling adventurous, you can even add functionality to IPython
through here. IPython works through a global variable called __ip which
exists at the time when these files are read. If you know what you are doing
(read the source) you can add functions to __ip in files loaded here.

The file example-magic.py contains a simple but correct example. Try it:

execfile example-magic.py

Look at the examples in IPython/iplib.py for more details on how these magic
functions need to process their arguments.

#---
Section: aliases for system shell commands

Here you can define your own names for system commands. The syntax is
similar to that of the builtin @alias function:

alias alias_name command_string

The resulting aliases are auto-generated magic functions (hence usable as
@alias_name)

For example:

alias myls ls -la

will define ’@myls’ as an alias for executing the system command ’ls -la’.
If automagic is on, you can just type myls like you would at a system shell
prompt. This allows you to customize IPython’s environment to have the same
aliases you are accustomed to from your own shell.

35

7 EMBEDDING IPYTHON IN OTHER PROGRAMS 6.2 IPython profiles

You can also define aliases with parameters using %s specifiers (one per
parameter):

alias parts echo first %s second %s

will give you in IPython:
>>> @parts A B
first A second B

Use one ’alias’ statement per alias you wish to define.

alias

#************************* end of file <ipythonrc> ************************

6.2 IPython profiles

As we already mentioned, IPython supports the -profile command-line option (see sec. 4.1). A
profile is nothing more than a particular configuration file like your basic ipythonrc one, but with
particular customizations for a specific purpose. When you start IPython with ’ipython -profile
<name>’, it assumes that in your IPYTHONDIR there is a file called ipythonrc-<name>, and loads it
instead of the normal ipythonrc.

This system allows you to maintain multiple configurations which load modules, set options, define
functions, etc. suitable for different tasks and activate them in a very simple manner. In order to
avoid having to repeat all of your basic options (common things that don’t change such as your color
preferences, for example), any profile can include another configuration file. The most common way
to use profiles is then to have each one include your basic ipythonrc file as a starting point, and
then add further customizations.

In sections 9 and 10 we discuss some particular profiles which come as part of the standard IPython
distribution. You may also look in your IPYTHONDIR directory, any file whose name begins with
ipythonrc- is a profile. You can use those as examples for further customizations to suit your own
needs.

7 Embedding IPython in other programs

It is possible to start an IPython instance inside your own Python programs. This allows you to
evaluate dynamically the state of your code, operate with your variables, analyze them, etc. Note
however that any changes you make to values while in the shell do not propagate back to the running
code, so it is safe to modify your values because you won’t break your code in bizarre ways by doing
so.

This feature allows you to easily have a fully functional python environment for doing object intro-
spection anywhere in your code with a simple function call. In some cases a simple print statement
is enough, but if you need to do more detailed analysis of a code fragment this feature can be very
valuable.

36

7 EMBEDDING IPYTHON IN OTHER PROGRAMS

It can also be useful in scientific computing situations where it is common to need to do some
automatic, computationally intensive part and then stop to look at data, plots, etc3. Opening an
IPython instance will give you full access to your data and functions, and you can resume program
execution once you are done with the interactive part (perhaps to stop again later, as many times
as needed).

The following code snippet is the bare minimum you need to include in your Python programs for
this to work (detailed examples follow later):

from IPython.Shell import IPythonShellEmbed
ipshell = IPythonShellEmbed()
ipshell() # this call anywhere in your program will start IPython

You can run embedded instances even in code which is itself being run at the IPython interactive
prompt with ’@run <filename>’. Since it’s easy to get lost as to where you are (in your top-level
IPython or in your embedded one), it’s a good idea in such cases to set the in/out prompts to
something different for the embedded instances. The code examples below illustrate this.

You can also have multiple IPython instances in your program and open them separately, for example
with different options for data presentation. If you close and open the same instance multiple times,
its prompt counters simply continue from each execution to the next.

Please look at the docstrings in the Shell.py module for more details on the use of this system.

The following sample file illustrating how to use the embedding functionality is provided in your
IPYTHONDIR directory as example-embed.py. It should be fairly self-explanatory:

#!/usr/bin/env python

"""An example of how to embed an IPython shell into a running program.

Please see the documentation in the IPython.Shell module for more details.

The accompanying file example-embed-short.py has quick code fragments for
embedding which you can cut and paste in your code once you understand how
things work.

The code in this file is deliberately extra-verbose, meant for learning."""

The basics to get you going:

Interactive runs of IPython set the __IPYTHON__ variable so you can know if
you have nested copies running.

Try running this code both at the command line and from inside IPython (with
@run example-embed.py)
try:

if __IPYTHON__:

3This functionality was inspired by IDL’s combination of the stop keyword and the .continue executive command,
which I have found very useful in the past, and by a posting on comp.lang.python by cmkl <cmkleffner@gmx.de> on
Dec. 06/01 concerning similar uses of pyrepl.

37

7 EMBEDDING IPYTHON IN OTHER PROGRAMS

print "Running nested copies of IPython."
print "The prompts for the nested copy have been modified"
Remember not to use quotes and to use %s to represent spaces:
nested = "-pi1 In%s<%n>: -po Out<%n>:"

except:
nested = ’’

First import the embeddable shell class
from IPython.Shell import IPythonShellEmbed

Now create an instance of the embeddable shell. The first argument is a
string with options exactly as you would type them if you were starting
IPython at the system command line. Any parameters you want to define for
configuration can thus be specified here.
ipshell = IPythonShellEmbed(’-nosep ’+nested,

banner = ’Dropping into IPython’,
exit_msg = ’Leaving Interpreter, back to program.’)

Make a second instance, you can have as many as you want.
if nested:

args = ’-nosep ’+nested.replace(’In%s’,’In2’)
else:

args = ’-nosep -pi1 In2<%n>: -po Out<%n>:’
ipshell2 = IPythonShellEmbed(args,banner = ’Second IPython instance.’)

print ’\nHello. This is printed from the main controller program.\n’

You can then call ipshell() anywhere you need it (with an optional
message):
ipshell(’***Called from top level. ’

’Hit Ctrl-D to exit interpreter and continue program.’)

print ’\nBack in caller program, moving along...\n’

#---
More details:

IPythonShellEmbed instances don’t print the standard system banner and
messages. The IPython banner (which actually may contain initialization
messages) is available as <instance>.IP.BANNER in case you want it.

IPythonShellEmbed instances print the following information everytime they
start:

- A global startup banner.

- A call-specific header string, which you can use to indicate where in the
execution flow the shell is starting.

38

7 EMBEDDING IPYTHON IN OTHER PROGRAMS

They also print an exit message every time they exit.

Both the startup banner and the exit message default to None, and can be set
either at the instance constructor or at any other time with the
set_banner() and set_exit_msg() methods.

The shell instance can be also put in ’dummy’ mode globally or on a per-call
basis. This gives you fine control for debugging without having to change
code all over the place.

The code below illustrates all this.

This is how the global banner and exit_msg can be reset at any point
ipshell.set_banner(’Entering interpreter - New Banner’)
ipshell.set_exit_msg(’Leaving interpreter - New exit_msg’)

def foo(m):
s = ’spam’
ipshell(’***In foo(). Try @whos, or print s or m:’)
print ’foo says m = ’,m

def bar(n):
s = ’eggs’
ipshell(’***In bar(). Try @whos, or print s or n:’)
print ’bar says n = ’,n

Some calls to the above functions which will trigger IPython:
print ’Main program calling foo("eggs")\n’
foo(’eggs’)

The shell can be put in ’dummy’ mode where calls to it silently return. This
allows you, for example, to globally turn off debugging for a program with a
single call.
ipshell.set_dummy_mode(1)
print ’\nTrying to call IPython which is now "dummy":’
ipshell()
print ’Nothing happened...’
The global ’dummy’ mode can still be overridden for a single call
print ’\nOverriding dummy mode manually:’
ipshell(dummy=0)

Reactivate the IPython shell
ipshell.set_dummy_mode(0)

print ’You can even have multiple embedded instances:’
ipshell2()

39

7 EMBEDDING IPYTHON IN OTHER PROGRAMS

print ’\nMain program calling bar("spam")\n’
bar(’spam’)

print ’Main program finished. Bye!’

#********************** End of file <example-embed.py> ***********************

Once you understand how the system functions, you can use the following code fragments in your
programs which are ready for cut and paste (this file is also in your IPYTHONDIR directory as
example-embed-short.py):

"""Quick code snippets for embedding IPython into other programs.

See example-embed.py for full details, this file has the bare minimum code for
cut and paste use once you understand how to use the system."""

#---
This code loads IPython but modifies a few things if it detects it’s running
embedded in another IPython session (helps avoid confusion)

Command-line options for IPython (no quotes, %s for spaces)
argv = ’’
try:

if __IPYTHON__:
Remember not to use quotes and to use %s to represent spaces:
nested = "-pi1 In%s<%n>: -po Out<%n>:"
banner = ’*** Nested interpreter ***’
exit_msg = ’*** Back in main IPython ***’

except:
nested = banner = exit_msg = ’’

First import the embeddable shell class
from IPython.Shell import IPythonShellEmbed
ipshell = IPythonShellEmbed(argv+’ ’+nested,banner=banner,exit_msg=exit_msg)

#---
This code will load an embeddable IPython shell always with no changes for
nested embededings.

from IPython.Shell import IPythonShellEmbed
ipshell = IPythonShellEmbed()
Now ipshell() will open IPython anywhere in the code.

#---
This code loads an embeddable shell only if NOT running inside
IPython. Inside IPython, the embeddable shell variable ipshell is just a

40

8 USING THE PYTHON DEBUGGER (PDB)

dummy function.

try:
__IPYTHON__

except:
from IPython.Shell import IPythonShellEmbed
ipshell = IPythonShellEmbed()
Now ipshell() will open IPython anywhere in the code

else:
Define a dummy ipshell() so the same code doesn’t crash inside an
interactive IPython
def ipshell(): pass

#******************* End of file <example-embed-short.py> ********************

8 Using the Python debugger (pdb)

IPython, if started with the -pdb option (or if the option is set in your rc file) can call the Python
pdb debugger every time your code triggers an uncaught exception4. This feature can also be turned
on and off at any time with the @pdb magic command. This can be extremely useful in order to
find the origin of subtle bugs, because pdb opens up at the point in your code which triggered the
exception, and while your program is at this point ’dead’, all the data is still available and you can
walk up and down the stack frame and understand the origin of the problem.

Furthermore, you can use these debugging facilities both with the embedded IPython mode and
without IPython at all. For an embedded shell (see sec. 7), simply call the constructor with ’-pdb’
in the argument string and automatically pdb will be called if an uncaught exception is triggered by
your code.

For stand-alone use of the feature in your programs which do not use IPython at all, put the following
lines toward the top of your ’main’ routine:

import sys,IPython.ultraTB
sys.excepthook = IPython.ultraTB.FormattedTB(mode=’Verbose’, color_scheme=’Linux’,
call_pdb=1)

The mode keyword can be either ’Verbose’ or ’Plain’, giving either very detailed or normal
tracebacks respectively. The color_scheme keyword can be one of ’NoColor’, ’Linux’ (default)
or ’LightBG’. These are the same options which can be set in IPython with -colors and -xmode.

This will give any of your programs detailed, colored tracebacks with automatic invocation of pdb.

If you want more information on the use of the pdb debugger, read the included pdb.doc file
(part of the standard Python distribution). On a stock Mandrake Linux system it is located at
/usr/lib/python2.2/pdb.doc, but the easiest way to read it is by using the help() function of the
pdb module as follows (in an IPython prompt):

In [1]: import pdb
In [2]: pdb.help()

This will load the pdb.doc document in a file viewer for you automatically.
4Many thanks to Christopher Hart for the request which prompted adding this feature to IPython.

41

9 EXTENSIONS FOR SYNTAX PROCESSING

9 Extensions for syntax processing

This isn’t for the faint of heart, because the potential for breaking things is quite high. But it can
be a very powerful and useful feature. In a nutshell, you can redefine the way IPython processes
the user input line to accept new, special extensions to the syntax without needing to change any
of IPython’s own code.

In the IPython/Extensions directory you will find two examples supplied, which we will briefly
describe now. These can be used ’as is’ (and both provide very useful functionality), or you can use
them as a starting point for writing your own extensions.

9.1 Pasting of code fragments starting with ’> > > ’ or ’... ’

In the python tutorial it is common to find code examples which have been taken from real python
sessions. The problem with those is that all the lines begin with either ’> > > ’ or ’... ’, which makes
it impossible to paste them all at once. One must instead do a line by line manual copying, carefully
removing the leading extraneous characters.

This extension identifies those starting characters and removes them from the input automatically,
so that one can paste multi-line examples directly into IPython, saving a lot of time. Please look at
the file InterpreterPasteInput.py in the IPython/Extensions directory for details on how this
is done.

IPython comes with a special profile enabling this feature, called tutorial. Simply start IPython
via ’ipython -p tutorial’ and the feature will be available. In a normal IPython session you can
activate the feature by importing the corresponding module with:
In [1]: import IPython.Extensions.InterpreterPasteInput

The following is a ’screenshot’ of how things work when this extension is on, copying an example
from the standard tutorial:

IPython profile: tutorial

*** Pasting of code with "> > >" or "..." has been enabled.

In [1]: > > > def fib2(n): # return Fibonacci series up to n
...: ... """Return a list containing the Fibonacci series up to n."""
...: ... result = []
...: ... a, b = 0, 1
...: ... while b < n:
...: ... result.append(b) # see below
...: ... a, b = b, a+b
...: ... return result
...:

In [2]: fib2(10)
Out[2]: [1, 1, 2, 3, 5, 8]

Note that as currently written, this extension does not recognize IPython’s prompts for pasting.
Those are more complicated, since the user can change them very easily, they involve numbers and
can vary in length. One could however extract all the relevant information from the IPython instance
and build an appropriate regular expression. This is left as an exercise for the reader.

42

10 ACCESS TO GNUPLOT 9.2 Input of physical quantities with units

9.2 Input of physical quantities with units

The module PhysicalQInput allows a simplified form of input for physical quantities with units.
This file is meant to be used in conjunction with the PhysicalQInteractive module (in the
same directory) and Physics.PhysicalQuantities from Konrad Hinsen’s ScientificPython (http:
//starship.python.net/crew/hinsen/scientific.html).

The Physics.PhysicalQuantities module defines PhysicalQuantity objects, but these must be
declared as instances of a class. For example, to define v as a velocity of 3 m/s, normally you would
write:
In [1]: v = PhysicalQuantity(3,’m/s’)

Using the PhysicalQ_Input extension this can be input instead as:
In [1]: v = 3 m/s
which is much more convenient for interactive use (even though it is blatantly invalid Python syntax).

The physics profile supplied with IPython (enabled via ’ipython -p physics’) uses these exten-
sions, which you can also activate with:

from math import * # math MUST be imported BEFORE PhysicalQInteractive
from IPython.Extensions.PhysicalQInteractive import *
import IPython.Extensions.PhysicalQInput

10 Access to Gnuplot

Through the magic extension system described in sec. 5.1, IPython incorporates a mechanism for
conveniently interfacing with the Gnuplot system (http://www.gnuplot.vt.edu). Gnuplot is a very
complete 2D and 3D plotting package available for many operating systems and commonly included
in modern Linux distributions.

Besides having Gnuplot installed, this functionality requires the Gnuplot.py module for interfacing
python with Gnuplot. It can be downloaded from: http://gnuplot-py.sourceforge.net.

The numeric IPython profile, which you can activate with ’ipython -p numeric’ will automatically
load the IPython Gnuplot extensions (plus Numeric and other useful things for numerical comput-
ing), contained in the GnuplotMagic module. You can also load this module at any time while
using IPython via an ’import GnuplotMagic’ command. This will create the globals Gnuplot (the
standard Gnuplot module) and g (a Gnuplot active instance) and the new magic commands @gp and
@gp_set_instance.

Below is a copy of the file which implements these5. This file can be used as an example for
writing sub-systems for interfacing to any other program from within IPython, such as talking to
Mathematica.

In the numutils module (available via ’import IPython.numutils’) you’ll also find the gnuplot_exec()
function which is useful for passing multi-line strings (such as those generated in Gnuplot via the
save command) to a Gnuplot instance. This function is not in GnuplotMagic because that module
only works inside IPython.

Gnuplot extensions file (loaded in the numeric profile by importing the GnuplotMagic module):

5This file is automatically copied to your IPYTHONDIR so you can modify it to suit your needs.

43

http://starship.python.net/crew/hinsen/scientific.html
http://starship.python.net/crew/hinsen/scientific.html
http://www.gnuplot.vt.edu
http://gnuplot-py.sourceforge.net

10 ACCESS TO GNUPLOT

"""Magic function system for convenient interfacing with Gnuplot.

Warning: This module can ONLY be imported inside IPython or through an
embedded IPython instance.

This requires the Gnuplot.py module for interfacing python with gnuplot. It
can be downloaded from:

http://gnuplot-py.sourceforge.net/

This system builds the magic functions:

@gp -> pass one command to gnuplot and execute them or open a gnuplot shell
where each line of input is executed.

@gp_set_instance -> see below.

and global variables:

- g: pointing to a running gnuplot instance.
- Gnuplot: the Gnuplot module.

The docstrings below contain more details.

Please note that all commands are executed in the gnuplot namespace, so no
python variables exist there. Any data communication has to be done via files,
or using the methods of the gnuplot instance directly. For convenience, a copy
of the internal gnuplot instance called ’g’ is created for you at startup. You
can call whichever methods you need on g (try typing g.<TAB> to see a list of
g’s methods, or see the documentation for the Gnuplot.py module for details).

Configure this file’s behavior by setting the global variable ’gnuplot_mouse’.

Inspired by a suggestion/request from Arnd Baecker."""

If you have a mouse-enabled gnuplot, you can set gnuplot_mouse to 1,
otherwise leave it at 0. Unfortunately there’s no way to currently catch the
resulting error message as a python exception if this doesn’t work, so I
can’t leave it permanently on.

Please note that this feature may cause some hiccups in communication with
the gnuplot process (requiring sometimes a command to be issued twice). This
is discussed in the gnuplot help and is an issue beyond my control. If it
becomes a problem, resign yourself to not using the mouse features in
gnuplot through IPython.

gnuplot_mouse = 0

44

10 ACCESS TO GNUPLOT

Create the Gnuplot instance we need
import Gnuplot

__IPYTHON__.gnuplot = Gnuplot.Gnuplot()
__IPYTHON__.gnuplot.shell_first_time = 1
g = __IPYTHON__.gnuplot # alias for interactive convenience

Force g as a global in IPython’s namespace if we’re being imported
if __name__ == ’GnuplotMagic’:

__IPYTHON__.user_ns[’g’] = g
__IPYTHON__.user_ns[’Gnuplot’] = Gnuplot

if gnuplot_mouse:
g(’set mouse’)
print "*** g is a global alias to the internal Gnuplot instance (mouse enabled)."

else:
print "*** g is a global alias to the internal Gnuplot instance."

print "*** Gnuplot instance access via @gp, or by calling methods of g directly."
print "*** Gnuplot module has been exported as a global."

Define the magic functions for communicating with the above gnuplot instance.
def magic_gp(self,parameter_s=’’):

"""Execute a gnuplot command or open a gnuplot shell.

Usage (omit the @ if automagic is on). There are two ways to use it:

1) @gp ’command’ -> passes ’command’ directly to the gnuplot instance.

2) @gp -> will open up a prompt (gnuplot>) which takes input until ’.’
is entered (without quotes), or ^C or ^D are pressed. Each line of input
is given to gnuplot as a command to be executed. If you need to type a
multi-line command, use \\ at the end of each intermediate line.

IPython traps the following forms of gnuplot’s termination command:
’quit’ and ’exit’, and simply returns to IPython without killing the
gnuplot process. But if you type another form accepted by gnuplot,
you’ll terminate gnuplot (see below for how to restart it). So in order
to simply return to IPython, use only one of the following exit options:
’.’, ’quit’,’exit’, ^D (EOF) or ^C.

Upon exiting of the gnuplot sub-shell, you return to your IPython
session (the gnuplot sub-shell can be invoked as many times as needed).

This system relies on the existence of a user-level variable called
__gnuplot pointing to an active Gnuplot session. This variable is
automatically created at startup, but if you overwrite it the system will
stop functioning. You can create it again with a call like:

45

10 ACCESS TO GNUPLOT

In [1]: __gnuplot = Gnuplot.Gnuplot() """

from IPython.genutils import raw_input_ext

if parameter_s.strip() == ’’:
try:

self.shell.gnuplot.has_run
except AttributeError:

print \
"""To exit gnuplot and return to IPython: ’.’, ’quit’, ’exit’, ^C or ^D (EOF).
Use \\ to break multi-line commands."""

self.shell.gnuplot.has_run = 1
try:

cmd = raw_input_ext(’gnuplot> ’,’more...> ’)
while cmd.strip() not in [’.’,’quit’,’exit’]:

self.shell.gnuplot(cmd)
cmd = raw_input_ext(’gnuplot> ’,’more...> ’)

except (EOFError,KeyboardInterrupt):
pass

else:
self.shell.gnuplot(parameter_s)

def magic_gp_set_instance(self,parameter_s=’’):
"""Set the global gnuplot instance accessed by the @gp magic function.

@gp_set_instance name

Call with the name of the new instance at the command line. If you want to
set this instance in your own code (using an embedded IPython, for
example), simply set the variable __IP.gnuplot to your own gnuplot
instance object."""

self.shell.gnuplot = eval(parameter_s)

Add the new magic functions to the class dict
from IPython.iplib import InteractiveShell
InteractiveShell.magic_gp = magic_gp
InteractiveShell.magic_gp_set_instance = magic_gp_set_instance

Keep global namespace clean
del magic_gp,magic_gp_set_instance,gnuplot_mouse

#********************** End of file <GnuplotMagic.py> *********************

You can also use Gnuplot as part of your normal Python programs. Below is some example code
which illustrates how to configure Gnuplot inside your own programs but have it available for further

46

10 ACCESS TO GNUPLOT

interactive use through an embedded IPython instance. Simply run this file at a system prompt.
This file is provided in your IPYTHONDIR as example-gnuplot.py:

#!/usr/bin/env python
"""
Example code showing how to use gnuplot and an embedded IPython shell.
"""

import Gnuplot
from Numeric import *
from IPython.numutils import *
from IPython.Shell import IPythonShellEmbed

Arguments to start IPython shell with. Load numeric profile.
ipargs = ’-profile numeric’
ipshell = IPythonShellEmbed(ipargs)

Compute sin(x) over the 0..2pi range at 100 points
x = frange(0,2*pi,npts=200)
y = sin(x)

Make a gnuplot instance
g2 = Gnuplot.Gnuplot()

Change some defaults
g2(’set data style lines’)

Or also call a multi-line set of gnuplot commands on it:
gnuplot_exec(g2,"""
set xrange [0:pi] # Set the visible range to half the data only
set title ’Half sine’ # Global gnuplot labels
set xlabel ’theta’
set ylabel ’sin(theta)’
""")

Set the gnuplot instance accessed by @gp to our customized one. This way the
interactive system @gp will see our instance with whatever changes we’ve
made to it.
ipshell.IP.gnuplot = g2

Now start an embedded ipython. g2 is a visible global, but it’s also the one
accessed by @gp now
ipshell(’Starting the embedded IPyhton.\n’

’Try calling g2.plot(zip(x,y)), or "@gp plot x**2"\n’)

#********************** End of file <example-gnuplot.py> *********************

47

12 BRIEF HISTORY

11 Reporting bugs

Ideally, IPython itself shouldn’t crash. It will catch exceptions produced by you, but bugs in it will
crash it.

Were such an unlikely event to occur :), IPython will leave a file named ’IPython_crash_report.txt’
in your IPYTHONDIR directory (that way if crashes happen several times it won’t litter many direc-
tories, the post-mortem file is always located in the same place and new occurrences just overwrite
the previous one). If you can mail this file to the developers (see sec. 14 for names and addresses),
it will help us a lot in understanding the cause of the problem and fixing it sooner.

12 Brief history

12.1 Origins

The current IPython system grew out of the following three projects:

ipython by Fernando Pérez. I was working on adding Mathematica-type prompts and a flexible
configuration system (something better than $PYTHONSTARTUP) to the standard
Python interactive interpreter.

IPP by Janko Hauser. Very well organized, great usability. Had an old help system. IPP
was used as the ’container’ code into which I added the functionality from the other two
systems.

LazyPython by Nathan Gray. Simple but very powerful. The quick syntax (auto parens, auto
quotes) and verbose/colored tracebacks were all taken from here.

When I found out (see sec. 14) about IPP and LazyPython I tried to join all three into a unified
system. I thought this could provide a very nice working environment, both for regular program-
ming and scientific computing: shell-like features, IDL/Matlab numerics, Mathematica-type prompt
history and great object introspection and help facilities. I think it worked reasonably well, though
it was a lot more work I had initially planned.

12.2 Current status

The above listed features work, and quite well for the most part. But until a major internal restruc-
turing is done (see below), only bug fixing will be done, no other features will be added (unless very
minor and well localized in the cleaner parts of the code).

IPython consists of almost 8000 lines of pure python code, of which roughly 50% are fairly clean.
The other 50% are fragile, messy code which needs a massive restructuring before any further major
work is done. Even the messy code is fairly well documented though, and most of the problems in
the (non-existent) class design are well pointed to by a PyChecker run. So the rewriting work isn’t
that bad, it will just be time-consuming.

48

14 CREDITS 12.3 Future

12.3 Future

See the separate new_design document for details. Ultimately, I would like to see IPython be-
come part of the standard Python distribution as a ’big brother with batteries’ to the standard
Python interactive interpreter. But that will never happen with the current state of the code, so all
contributions are welcome.

13 License

Unless indicated otherwise, files in this project are covered by the GNU Lesser General Public License
(LGPL). Its full text is included in the file GNU-LGPL or can be obtained directly from the Free
Software Foundation at: http://www.gnu.org/copyleft/lesser.html.

IPython is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

Individual authors are the holders of the copyright for their code and are listed in each file.

Some files (DPyGetOpt.py, for example) may be licensed under different conditions. Ultimately each
file indicates clearly the conditions under which its author/authors have decided to publish the code.

14 Credits

The main authors of the code are:

Fernando Pérez <fperez@pizero.colorado.edu> (currently main contact)

Janko Hauser <jhauser@ifm.uni-kiel.de>

Nathan Gray <n8gray@caltech.edu>

And we are very grateful to:

Bill Bumgarner <bbum@friday.com>: for providing the DPyGetOpt module which gives very pow-
erful and convenient handling of command-line options (light years ahead of what Python 2.1.1’s
getopt module does).

Ka-Ping Yee <ping@lfw.org>: for providing the Itpl module for convenient and powerful string
interpolation with a much nicer syntax than formatting through the ’%’ operator.

Arnd Bäcker <arnd.baecker@physik.uni-ulm.de>: for his many very useful suggestions and com-
ments, and lots of help with testing and documentation checking. Many of IPython’s newer features
are a result of discussions with him (bugs are still my fault, not his).

Obviously Guido van Rossum and the whole Python development team, that goes without saying.

Fernando would also like to thank Stephen Figgins <fig@monitor.net>, an O’Reilly Python editor.
His Oct/11/01 article about IPP and LazyPython, was what got this project started. You can read
it at: http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html.

And last but not least, all the kind IPython users who have emailed bug reports, fixes, comments
and ideas.

49

http://www.gnu.org/copyleft/lesser.html
http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html

	Overview
	Main features
	Portability and Python requirements
	Location

	Installation
	Under Unix-type operating systems (Linux, Mac OS X, etc.)
	RedHat 7.x notes

	Under Windows
	Help access
	Initial configuration comments
	(X)Emacs users
	Color support
	Name completion

	Upgrading from a previous version
	Command-line use
	Options

	Interactive use
	Magic command system
	Magic commands

	Access to the standard Python help
	Dynamic object information
	Readline-based features
	Command line completion
	Search command history
	Persistent command history across sessions
	Customizing readline behavior

	Session logging and restoring
	System shell access
	System command aliases
	Recursive reload
	Verbose and colored exception traceback printouts
	Input caching system
	Output caching system
	Directory history
	Automatic parentheses and quotes
	Automatic parentheses
	Automatic quoting
	Notes on usage of these two features

	Customization
	Sample ipythonrc file
	IPython profiles

	Embedding IPython in other programs
	Using the Python debugger (pdb)
	Extensions for syntax processing
	Pasting of code fragments starting with '>>> ' or '... '
	Input of physical quantities with units

	Access to Gnuplot
	Reporting bugs
	Brief history
	Origins
	Current status
	Future

	License
	Credits

