
The Twisted Documentation

The Twisted Development Team

January 29, 2003

Contents

1 Introduction 10
1.1 High-Level Overview of Twisted . 10
1.2 The Vision For Twisted . 11
1.3 Overview of Twisted Internet . 11
1.4 Overview of Twisted Web . 12

1.4.1 Introduction . 12
1.4.2 Twisted Web’s Structure . 12
1.4.3 Resources . 12
1.4.4 Widgets . 12

1.5 Overview of Twisted Spread . 13
1.5.1 Rationale . 13

1.6 Introduction to Twisted Enterprise . 13
1.6.1 Abstract . 13
1.6.2 What you should already know . 13
1.6.3 Quick Overview . 13
1.6.4 How do I use adbapi? . 14
1.6.5 And that’s it! . 15

1.7 Why and How to use Twisted.Cred . 15
1.7.1 Authentication and Account Management in Twisted . 15

1.8 Overview of Twisted IM . 16
1.8.1 Code flow . 17

2 The Basics 19
2.1 Installing Twisted . 19

2.1.1 Installation . 19
2.1.2 Optional Compilation . 19
2.1.3 Running Tests . 20

2.2 The Basics . 20
2.2.1 Application . 20
2.2.2 Serialization . 20
2.2.3 mktap and tapconvert . 21
2.2.4 twistd . 21
2.2.5 tap2deb . 21

2.3 Configuring and Using the Twisted.Web Server . 22

1

CONTENTS 2

2.3.1 Installation . 22
2.3.2 Using Twisted.Web . 22
2.3.3 Rewriting URLs . 25

2.4 Debugging with Manhole . 26
2.4.1 Creating the Manhole Service . 26
2.4.2 Using the Manhole PB Client . 26
2.4.3 Special Commands . 27

2.5 Creating and working with a telnet server . 28
2.5.1 More Complicated Configuration . 30

3 High-Level Twisted 34
3.1 Asynchronous Programming . 34

3.1.1 Introduction . 34
3.1.2 Async Design Issues . 35
3.1.3 Using Reflection . 35

3.2 Using app.Application . 35
3.2.1 Motivation . 35
3.2.2 Example Application . 36
3.2.3 Saving State Across Sessions: Adding Persistent Data . 37
3.2.4 Configuration arguments . 39

3.3 Writing a New Plug-In for Twisted . 40
3.3.1 Getting Started . 40
3.3.2 Twisted and You: Where Does Your Code Fit In? . 40
3.3.3 What is a Plug-In? . 41
3.3.4 Twisted Quotes: A Case Study . 42

3.4 Twisted Enterprise Row Objects . 47
3.4.1 Class Definitions . 48
3.4.2 Initialization . 48
3.4.3 Creating Row Objects . 49
3.4.4 Relationships Between Tables . 50
3.4.5 Duplicate Row Objects . 50
3.4.6 Updating Row Objects . 50
3.4.7 Deleting Row Objects . 50

3.5 Using usage.Options . 51
3.5.1 Introduction . 51
3.5.2 Boolean Options . 51
3.5.3 Parameters . 52
3.5.4 Option Subcommands . 53
3.5.5 Generic Code For Options . 54
3.5.6 Parsing Arguments . 54
3.5.7 Post Processing . 55

3.6 DirDBM: Directory-based Storage . 55
3.6.1 dirdbm.DirDBM . 55
3.6.2 dirdbm.Shelf . 56

CONTENTS 3

4 Low-Level Twisted 57
4.1 Reactor Basics . 57
4.2 Writing Servers . 58

4.2.1 Overview . 58
4.2.2 Protocols . 58
4.2.3 Factories . 60

4.3 Writing Clients . 62
4.3.1 Overview . 62
4.3.2 Protocol . 63
4.3.3 ClientFactory . 63
4.3.4 A Higher-Level Example: ircLogBot . 64

4.4 UDP Networking . 65
4.4.1 Overview . 65
4.4.2 DatagramProtocol . 65
4.4.3 Connected UDP . 66

4.5 Using Processes . 66
4.5.1 Overview . 66
4.5.2 Running Another Process . 67
4.5.3 Writing a ProcessProtocol . 67
4.5.4 Things that can happen to your ProcessProtocol . 68
4.5.5 Things you can do from your ProcessProtocol . 69
4.5.6 Verbose Example . 70
4.5.7 Doing it the Easy Way . 71

4.6 Deferring Execution . 72
4.6.1 The Problem . 72
4.6.2 Deferreds . 73
4.6.3 Class Overview . 77
4.6.4 DeferredList . 79

4.7 Scheduling tasks for the future . 81
4.8 Using Threads in Twisted . 82

4.8.1 Introduction . 82
4.8.2 Running code in a thread-safe manner . 82
4.8.3 Running code in threads . 82
4.8.4 Utility Methods . 83
4.8.5 Managing the Thread Pool . 83

4.9 Choosing a Reactor and GUI Toolkit Integration . 84
4.9.1 Overview . 84
4.9.2 Reactor Functionality . 84
4.9.3 General Purpose Reactors . 84
4.9.4 Platform-Specific Reactors . 85
4.9.5 GUI Integration Reactors . 86
4.9.6 Non-Reactor GUI Integration . 86

CONTENTS 4

5 Perspective Broker 88
5.1 Introduction to Perspective Broker . 88

5.1.1 Introduction . 88
5.1.2 Class Roadmap . 88
5.1.3 Things you can Call Remotely . 90
5.1.4 Things you can Copy Remotely . 90

5.2 Using Perspective Broker . 92
5.2.1 Basic Example . 92
5.2.2 Complete Example . 94
5.2.3 Passing more references . 97
5.2.4 References can come back to you . 98
5.2.5 References to client-side objects . 100
5.2.6 Raising Remote Exceptions . 101
5.2.7 Try/Except blocks and Failure.trap . 103

5.3 PB Copyable: Passing Complex Types . 107
5.3.1 Overview . 107
5.3.2 Motivation . 107
5.3.3 Passing Objects . 107
5.3.4 pb.Copyable . 109
5.3.5 pb.Cacheable . 115

5.4 Authentication with Perspective Broker . 120
5.4.1 Motivation . 120
5.4.2 A sample application . 122
5.4.3 Perspectives . 122
5.4.4 Class Overview . 127
5.4.5 Class Responsibilities . 128
5.4.6 How that example worked . 130
5.4.7 Code Walkthrough: pb.connect() . 131
5.4.8 A Larger Example . 132

6 Web Applications 133
6.1 Webizing your application with DOMTemplate . 133

6.1.1 Intro . 133
6.1.2 Before we begin . 133
6.1.3 Getting To It . 134

6.2 Developing Componentized Web Applications using Woven, the Web Object Visualization Environment136
6.2.1 Introduction . 136
6.2.2 Model-View-Controller . 136
6.2.3 Hello World with Page . 137
6.2.4 Implementing IModel . 140

6.3 Introducing Twisted Web Widgets . 142
6.3.1 Introduction . 142
6.3.2 Example Code . 142
6.3.3 The Diagram . 143
6.3.4 The Classes . 143
6.3.5 Common Pitfalls . 144

CONTENTS 5

6.4 Light Weight Templating With Resource Templates . 145
6.4.1 Overview . 145
6.4.2 Configuring Twisted.Web . 145
6.4.3 Using ResourceTemplate . 146

6.5 Creating XML-RPC Servers and Clients with Twisted . 146
6.5.1 Introduction . 146
6.5.2 Creating a XML-RPC server . 147
6.5.3 SOAP Support . 148
6.5.4 Creating an XML-RPC Client . 149

7 Dot Products 150
7.1 Creating and working with a names (DNS) server . 150

8 Working on the Twisted Code Base 152
8.1 Twisted Coding Standard . 152

8.1.1 Naming . 152
8.1.2 Testing . 152
8.1.3 Whitespace . 153
8.1.4 Modules . 153
8.1.5 Packages . 153
8.1.6 Docstrings . 153
8.1.7 Scripts . 154
8.1.8 ChangeLog . 155
8.1.9 Classes . 155
8.1.10 Methods . 155
8.1.11 Functions . 156
8.1.12 Attributes . 156
8.1.13 Database . 156
8.1.14 C Code . 156
8.1.15 Checkin Messages . 157
8.1.16 Recommendations . 157

8.2 HTML Documentation Standard for Twisted . 157
8.2.1 Allowable Tags . 157
8.2.2 Multi-line Code Snippets . 157
8.2.3 Code inside paragraph text . 159
8.2.4 Headers . 159
8.2.5 XHTML . 159
8.2.6 Tag Case . 159
8.2.7 Footnotes . 159
8.2.8 Suggestions . 160

8.3 Unit Tests in Twisted . 160
8.3.1 Unit Tests in the Twisted Philosophy . 160
8.3.2 What to Test, What Not to Test . 160
8.3.3 Running the Tests . 160
8.3.4 Adding a Test . 161
8.3.5 Links . 161

CONTENTS 6

9 Manual Pages 163
9.1 COIL.1 . 163

9.1.1 NAME . 163
9.1.2 SYNOPSIS . 163
9.1.3 DESCRIPTION . 163
9.1.4 AUTHOR . 163
9.1.5 REPORTING BUGS . 163
9.1.6 COPYRIGHT . 164
9.1.7 SEE ALSO . 164

9.2 CONCH.1 . 165
9.2.1 NAME . 165
9.2.2 SYNOPSIS . 165
9.2.3 DESCRIPTION . 165
9.2.4 DESCRIPTION . 165
9.2.5 AUTHOR . 165
9.2.6 REPORTING BUGS . 166
9.2.7 COPYRIGHT . 166
9.2.8 SEE ALSO . 166

9.3 GENERATELORE.1 . 167
9.3.1 NAME . 167
9.3.2 SYNOPSIS . 167
9.3.3 DESCRIPTION . 167
9.3.4 DESCRIPTION . 167
9.3.5 AUTHOR . 167
9.3.6 REPORTING BUGS . 167
9.3.7 COPYRIGHT . 167
9.3.8 SEE ALSO . 167

9.4 HLINT.1 . 168
9.4.1 NAME . 168
9.4.2 SYNOPSIS . 168
9.4.3 DESCRIPTION . 168
9.4.4 AUTHOR . 168
9.4.5 REPORTING BUGS . 168
9.4.6 COPYRIGHT . 168
9.4.7 SEE ALSO . 168

9.5 HTML2LATEX.1 . 169
9.5.1 NAME . 169
9.5.2 SYNOPSIS . 169
9.5.3 DESCRIPTION . 169
9.5.4 DESCRIPTION . 169
9.5.5 AUTHOR . 169
9.5.6 REPORTING BUGS . 169
9.5.7 COPYRIGHT . 169
9.5.8 SEE ALSO . 169

9.6 IM.1 . 170
9.6.1 NAME . 170

CONTENTS 7

9.6.2 SYNOPSIS . 170
9.6.3 DESCRIPTION . 170
9.6.4 AUTHOR . 170
9.6.5 REPORTING BUGS . 170
9.6.6 COPYRIGHT . 170

9.7 MANHOLE.1 . 171
9.7.1 NAME . 171
9.7.2 SYNOPSIS . 171
9.7.3 DESCRIPTION . 171
9.7.4 AUTHOR . 171
9.7.5 REPORTING BUGS . 171
9.7.6 COPYRIGHT . 171

9.8 MKTAP.1 . 172
9.8.1 NAME . 172
9.8.2 SYNOPSIS . 172
9.8.3 DESCRIPTION . 172
9.8.4 portforward options . 172
9.8.5 web options . 172
9.8.6 toc options . 173
9.8.7 mail options . 173
9.8.8 telnet options . 173
9.8.9 socks options . 174
9.8.10 ftp options . 174
9.8.11 manhole options . 174
9.8.12 words options . 174
9.8.13 AUTHOR . 174
9.8.14 REPORTING BUGS . 174
9.8.15 COPYRIGHT . 174
9.8.16 SEE ALSO . 175

9.9 IM.1 . 176
9.9.1 NAME . 176
9.9.2 SYNOPSIS . 176
9.9.3 DESCRIPTION . 176
9.9.4 AUTHOR . 176
9.9.5 REPORTING BUGS . 176
9.9.6 COPYRIGHT . 176

9.10 TAP2DEB.1 . 177
9.10.1 NAME . 177
9.10.2 SYNOPSIS . 177
9.10.3 DESCRIPTION . 177
9.10.4 AUTHOR . 177
9.10.5 REPORTING BUGS . 177
9.10.6 COPYRIGHT . 177
9.10.7 SEE ALSO . 178

9.11 TAPCONVERT.1 . 179
9.11.1 NAME . 179

CONTENTS 8

9.11.2 SYNOPSIS . 179
9.11.3 DESCRIPTION . 179
9.11.4 AUTHOR . 179
9.11.5 REPORTING BUGS . 179
9.11.6 COPYRIGHT . 179
9.11.7 SEE ALSO . 179

9.12 TRIAL.1 . 180
9.12.1 NAME . 180
9.12.2 SYNOPSIS . 180
9.12.3 DESCRIPTION . 180
9.12.4 AUTHOR . 180
9.12.5 REPORTING BUGS . 180
9.12.6 COPYRIGHT . 180

9.13 TWISTD.1 . 181
9.13.1 NAME . 181
9.13.2 SYNOPSIS . 181
9.13.3 DESCRIPTION . 181
9.13.4 AUTHOR . 182
9.13.5 REPORTING BUGS . 182
9.13.6 COPYRIGHT . 182
9.13.7 SEE ALSO . 182

9.14 WEBSETROOT.1 . 183
9.14.1 NAME . 183
9.14.2 SYNOPSIS . 183
9.14.3 DESCRIPTION . 183
9.14.4 AUTHOR . 183
9.14.5 REPORTING BUGS . 183
9.14.6 COPYRIGHT . 183
9.14.7 SEE ALSO . 183

10 Appendix 184
10.1 The Twisted FAQ . 184

10.1.1 What is “Twisted”? . 184
10.1.2 Why should I use Twisted? . 184
10.1.3 I have a problem “getting” Twisted. 184
10.1.4 Why is Twisted so big? . 184
10.1.5 But won’t Twisted bloat my program, since it’s so big? . 185
10.1.6 Does the 1.0 release mean that all of Twisted’s APIs are stable? 185
10.1.7 Which parts of Twisted 1.0 are stable? . 185
10.1.8 How can I access self.factory from my Protocol’s init ? 185
10.1.9 Is the Twisted web server a toy? . 185
10.1.10 But can Twisted Web do PHP? . 185
10.1.11 And can Twisted Web do virtual hosting? . 186
10.1.12 Where can I find out how to write Twisted servers? . 186
10.1.13 Twisted is cool, but I need to add more functionality. 186
10.1.14 I have a patch. How do I maximize the chances the Twisted developers will include it? 186

CONTENTS 9

10.1.15 Twisted really needs documentation for X, Y or Z - how come it’s not documented?. 186
10.1.16 My company would love to use Twisted, but it’s missing feature X, can you implement it? . . 186
10.1.17 Help! . 186
10.1.18 I have this cool patch. To whom do I send it? . 187
10.1.19 There’s a bug in Twisted. Where do I report it? . 187
10.1.20 How do I use twisted.web to do complex things? . 187
10.1.21 I’ve been using Woven since before it was called Woven. I just upgraded and now I’m getting

a confusing traceback talking about INodeMutator. What gives? 187
10.1.22 When I try to install my reactor, I get errors about a reactor already being installed. What gives?187
10.1.23 Wow the Twisted documentation is nice! I want my docs to look like that too! 187
10.1.24 twistd won’t load my .tap file! . 187
10.1.25 How do I e-mail a Twisted developer? . 189

10.2 Twisted Glossary . 189
10.3 Banana Protocol Specifications . 192

10.3.1 Introduction . 192
10.3.2 Banana Encodings . 192
10.3.3 Element Types . 192
10.3.4 Profiles . 193
10.3.5 Protocol Handshake and Behaviour . 195

Chapter 1

Introduction

1.1 High-Level Overview of Twisted

Twisted.Internet
TCP, UDP, SSL, I/O, ...

Twisted.Protocols
HTTP, SMTP, DNS, IRC, TELNET, POP3, SSH, ...

GUI Integration
Tk, GTK, QT, wxWindows

Twisted:
The Framework of Your Internet

Twisted.Spread
Remote object access

Jelly
Serialization

Banana
Marshalling

Perspective Broker
Communication

Twisted.Web
Web server

Twisted.Mail
e-mail server

Twisted.Names
DNS server

Twisted.Conch
Secure shell

Twisted.Words
Chat services

Twisted.Cred
Authentication

Twisted.Persisted
Object persistence

Twisted.Enterprise
Oracle,MySQL,PostgreSQL,...

10

CHAPTER 1. INTRODUCTION 11

1.2 The Vision For Twisted
Many other documents in this repository are dedicated to defining what Twisted is. Here, I will attempt to explain not
what Twisted is, but what it should be, once I’ve met my goals with it.

First, Twisted should be fun. It began as a game, it is being used commercially in games, and it will be, I hope, an
interactive and entertaining experience for the end-user.

Twisted is a platform for developing internet applications. While python, by itself, is a very powerful language,
there are many facilities it lacks which other languages have spent great attention to adding. It can do this now;
Twisted is a good (if somewhat idiosyncratic) pure-python framework or library, depending on how you treat it, and it
continues to improve.

As a platform, Twisted should be focused on integration. Ideally, all functionality will be accessible through
all protocols. Failing that, all functionality should be configurable through at least one protocol, with a seamless
and consistent user-interface. The next phase of development will be focusing strongly on a configuration system
which will unify many disparate pieces of the current infrastructure, and allow them to be tacked together by a non-
programmer.

Twisted should be a collaboration application. The next major phase of development will also involve lots of chat,
mail, and news functionality, both in clients and in servers.

Finally, Twisted should be a personal information space as well as a shared one. Twisted should unify all your
messages and contacts for you across multiple machines and in multiple environments, through multiple modes of
access, while also being industrial-strength enough to run the back end of an online sales service with millions of
users.

1.3 Overview of Twisted Internet
Twisted Internet is a compatible collection of event-loops for Python. It contains the code to dispatch events to
interested observers, and a portable API so that observers need not care about which event loop is running. Thus, it is
possible to use the same code for different loops, from Twisted’s basic, yet portable, select-based loop to the loops
of various GUI toolkits like GTK+ or Tk. Twisted Internet also contains a powerful persistence API so that network
programs can be shutdown and then resurrected with most of the code unaware of this.

Twisted Internet contains the various interfaces to the reactor API, whose usage is documented in the low-level
chapter. Those APIs are IReactorCore, IReactorTCP, IReactorSSL, IReactorUNIX, IReactorUDP,
IReactorTime, IReactorProcess and IReactorThreads. The reactor APIs allow non-persistent calls to
be made.

Twisted Internet also covers the interfaces for the various transports, in ITransport and friends. These inter-
faces allow Twisted network code to be written without regard to the underlying implementation of the transport.

The IProtocolFactory dictates how factories, which are usually a large part of third party code, are written.
The app.Application class allows for a similar API to the reactor, which is automatically persistent. Appli-

cations usually persist and resurrect automatically, depending on the usage. See the Application documentation (page
35) for more information.

CHAPTER 1. INTRODUCTION 12

1.4 Overview of Twisted Web

1.4.1 Introduction
Twisted Web is a web application server written in pure Python, with APIs at multiple levels of abstraction to facilitate
different kinds of web programming. The most useful for web application designers is Web Widgets (page 142), a
high-level class-and-template oriented system. There is also the Resource system, which Web Widgets is built on.

1.4.2 Twisted Web’s Structure

Resource System

Web Widgets

Web Client

web.server.Server
(protocols.http.HTTP)

web.server.Request

When the Web Server receives a request from a Client, it creates a Request object and passes it on to the Resource
system. The Resource system dispatches to the appropriate Resource object based on what path was requested by the
client. The Resource is asked to render itself, and the result is returned to the client.

1.4.3 Resources
Resources are the lowest-level abstraction for applications in the Twisted web server. Each Resource is a 1:1 mapping
with a path that is requested: you can think of a Resource as a single “page” to be rendered. The interface for
making Resources is very simple; they must have a method named render which takes a single argument, which is
the Request object (an instance of twisted.web.server.Request). This render method must return a string,
which will be returned to the web browser making the request. Alternatively, they can return a special constant,
twisted.web.server.NOT DONE YET, which tells the web server not to close the connection; you must then
use request.write(data) to render the page, and call request.finish()whenever you’re done.

1.4.4 Widgets
Web Widgets are an added layer of abstraction of Resources – they’re much nicer for most sorts of web applications.
For more information on Widgets, see Introducing Web Widgets (page 142).

CHAPTER 1. INTRODUCTION 13

1.5 Overview of Twisted Spread
Perspective Broker (affectionately known as “PB”) is an asynchronous, symmetric1, network protocol for secure,
remote method calls. PB is “translucent, not transparent”, meaning that it is very visible and obvious to see the
difference between local method calls and potentially remote method calls, but remote method calls are still extremely
convenient to make, and it is easy to emulate them to have objects which work both locally and remotely.

PB supports user-defined serialized data in return values, which can be either copied each time the value is returned,
or “cached”: only copied once and updated by notifications.

PB gets its name from the fact that access to objects is through a “perspective”. This means that when you are
responding to a remote method call, you can establish who is making the call.

1.5.1 Rationale
No other currently existing protocols have all the properties of PB at the same time. The particularly interesting
combination of attributes, though, is that PB is flexible and lightweight, allowing for rapid development, while still
powerful enough to do two-way method calls and user-defined data types.

It is important to have these attributes in order to allow for a protocol which is extensible. One of the facets of
this flexibility is that PB can integrate an arbitrary number of services could be aggregated over a single connection,
as well as publish and call new methods on existing objects without restarting the server or client.

1.6 Introduction to Twisted Enterprise

1.6.1 Abstract
Twisted is an asynchronous networking framework, but most database API implementations unfortunately have block-
ing interfaces – for this reason, twisted.enterprise.adbapiwas created. It is a non-blocking interface to the
standardized DB-API 2.0 API, which allows you to access a number of different RDBMSes.

1.6.2 What you should already know
• Python :-)

• How to write a simple Twisted Server (see this tutorial (page 58) to learn how)

• Familiarity with using database interfaces (see the documentation for DBAPI 2.02 or this article3 by Andrew
Kuchling)

1.6.3 Quick Overview
Twisted is an asynchronous framework. This means standard database modules cannot be used directly, as they
typically work something like:

1There is a negotiation phase for banana with particular roles for listener and initiator, so it’s not completely symmetric, but after the connection
is fully established, the protocol is completely symmetrical.

2http://www.python.org/topics/database/DatabaseAPI-2.0.html
3http://www.amk.ca/python/writing/DB-API.html

CHAPTER 1. INTRODUCTION 14

Create connection...
db = dbmodule.connect(’mydb’, ’andrew’, ’password’)
...which blocks for an unknown amount of time

Create a cursor
cursor = db.cursor()

Do a query...
resultset = cursor.query(’SELECT * FROM table WHERE ...’)
...which could take a long time, perhaps even minutes.

Those delays are unacceptable when using an asynchronous framework such as Twisted. For this reason, twisted
provides twisted.enterprise.adbapi, an asynchronous wrapper for any DB-API 2.04-compliant module. It
is currently best tested with the pyPgSQL5 module for PostgreSQL6.

enterprise.adbapi will do blocking database operations in seperate threads, which trigger callbacks in the
originating thread when they complete. In the meantime, the original thread can continue doing normal work, like
servicing other requests.

1.6.4 How do I use adbapi?
Rather than creating a database connection directly, use the adbapi.ConnectionPool class to manage a connec-
tions for you. This allows enterprise.adbapi to use multiple connections, one per thread. This is easy:

Using the "dbmodule" from the previous example, create a ConnectionPool
from twisted.enterprise import adbapi
dbpool = adbapi.ConnectionPool("dbmodule", ’mydb’, ’andrew’, ’password’)

Things to note about doing this:

• There is no need to import dbmodule directly. You just pass the name to adbapi.ConnectionPool’s
constructor.

• The parameters you would pass to dbmodule.connect are passed as extra arguments to adbapi.Connection
Pool’s constructor. Keyword parameters work as well.

• You may also control the size of the connection pool with the keyword parameters cp min and cp max. The
default minimum and maximum values are 3 and 5.

So, now you need to be able to dispatch queries to your ConnectionPool. We do this by subclassing adbapi.
Augmentation. Here’s an example:

class AgeDatabase(adbapi.Augmentation):
"""A simple example that can retrieve an age from the database"""
def getAge(self, name):

Define the query

4http://www.python.org/topics/database/DatabaseAPI-2.0.html
5http://pypgsql.sourceforge.net/
6http://www.postgresql.org/

CHAPTER 1. INTRODUCTION 15

sql = """SELECT Age FROM People WHERE name = ?"""
Run the query, and return a Deferred to the caller to add
callbacks to.
return self.runQuery(sql, name)

def gotAge(resultlist, name):
"""Callback for handling the result of the query"""
age = resultlist[0][0] # First field of first record
print "%s is %d years old" % (name, age)

db = AgeDatabase(dbpool)

These will *not* block. Hooray!
db.getAge("Andrew").addCallbacks(gotAge, db.operationError,

callbackArgs=("Andrew",))
db.getAge("Glyph").addCallbacks(gotAge, db.operationError,

callbackArgs=("Glyph",))

Of course, nothing will happen until the reactor is started
from twisted.internet import reactor
reactor.run()

This is straightforward, except perhaps for the return value of getAge. It returns a twisted.internet.
defer.Deferred, which allows arbitrary callbacks to be called upon completion (or upon failure). More docu-
mentation on Deferred is available here (page 72).

Also worth noting is that this example assumes that dbmodule uses the “qmarks” paramstyle (see the DB-API
specification). If your dbmodule uses a different paramstyle (e.g. pyformat) then use that. Twisted doesn’t attempt to
offer any sort of magic paramater munging – runQuery(query, params, ...) maps directly onto cursor.
execute(query, params, ...).

1.6.5 And that’s it!
That’s all you need to know to use a database from within Twisted. You probably should read the adbapi module’s
documentation to get an idea of the other functions it has, but hopefully this document presents the core ideas.

1.7 Why and How to use Twisted.Cred

1.7.1 Authentication and Account Management in Twisted
(This document is a work in progress. Later it will include some examples but for now a brief explanation is better
than nothing!)

Twisted unifies authentication and account management of multiple services in the Twisted.Cred package. Al-
though this authentication model was originally designed to integrate services in the Perspective Broker (page 13)
remote method invocation protocol, it is useful in many kinds of servers, and work is underway to move all systems
that require log-in in Twisted to use twisted.cred.

CHAPTER 1. INTRODUCTION 16

In order to use twisted.cred, your code has to be structured around a subclass of Service. A service is a particular
unit of functionality which has a way to request Perspective objects. You will probably have to subclass both of
these.

In order to simplify integration of services that come from lots of different places, Twisted.Cred presents user-
account related information in two different ways. Application-independent user information, such as passwords,
public keys, and other things related to the existence and authentication of a particular person should reside in an
Identity. Information related to a particular service, such as e-mail messages, high scores, or to-do lists should be
represented by a Perspective.

In support of these two basic abstractions is the Authorizer. An authorizer serves primarily as the storage
mechanism for a collection of identities. Its usage varies depending on whether the services it is providing authentica-
tion for can support multiple services on one port. Authorizer is an abstract class, but you don’t need to implement
your own; the simplest authorizer to get started with is DefaultAuthorizer.

At this point, there are basically 2 ways that an authorizer can be used. It is either the root of a PB object hierarchy,
or simply the authorizer for some number of non-PB services.

Setting Up a Service

from twisted.internet.app import MultiService
A service which collects other services.
from twisted.cred.authorizer import DefaultAuthorizer
A simple in-memory Authorizer implementation.
from my.service import MyService, OtherService
Two sample user-written services.

multiserv = MultiService("pb")
multiservice named "pb" to hold other services
auth = DefaultAuthorizer()
auth.setApplication(multiserv)
the authorizer for both of our other services
myserv = MyService("my service", multiserv, auth)
otherserv = OtherService("another service", multiserv, auth)
create both of our services pointing to their authorizer

from twisted.internet import reactor
from twisted.spread import pb
reactor.listenTCP(pb.portno, pb.AuthRoot(auth))
If the services are all pb.Service subclasses, we can connect them to a
network like this. It will look up services through the serviceCollection
passed to the Authorizer; which in this case was a MultiService but could
also be an Application.

1.8 Overview of Twisted IM
Twisted IM (Instance Messenger) is a multi-protocol chat framework, based on the Twisted framework we’ve all come
to know and love. It’s fairly simple and extensible in two directions - it’s pretty easy to add new protocols, and it’s

CHAPTER 1. INTRODUCTION 17

also quite easy to add new front-ends.

1.8.1 Code flow
Twisted IM is usually started from the file twisted/scripts/im.py (maybe with a shell-script wrapper or
similar). Twisted currently comes with two interfaces for Twisted IM - one written in GTK for Python under Linux,
and one written in Swing for Jython. im.py picks an implementation and starts it - if you want to write your own
interface, you can modify im.py to start it under appropriate conditions.

Once started, both interfaces behave in a very similar fashion, so I won’t be getting into differences here.

AccountManager

Control flow starts at the relevant subclass of baseaccount.AccountManager. The AccountManager is respon-
sible for, well, managing accounts - remembering what accounts are available, their settings, adding and removal of
accounts, and making accounts log on at startup.

This would be a good place to start your interface, load a list of accounts from disk and tell them to login. Most
of the method names in AccountManager are pretty self-explanatory, and your subclass can override whatever it
wants, but you need to override init . Something like this:

def __init__(self):
self.chatui = ... # Your subclass of basechat.ChatUI
self.accounts = ... # Load account list
for a in self.accounts:
a.logOn(self.chatui)

ChatUI

Account objects talk to the user via a subclass of basechat.ChatUI. This class keeps track of all the various
conversations that are currently active, so that when an account receives and incoming message, it can put that message
in its correct context.

How much of this class you need to override depends on what you need to do. You will need to override get
Conversation (a one-on-one conversation, like an IRC DCC chat) and getGroupConversation (a multiple
user conversation, like an IRC channel). You might want to override getGroup and getPerson.

The main problem with the default versions of the above routines is that they take a parameter, Class, which
defaults to an abstract implementation of that class - for example, getConversation has a Class parameter that
defaults to basechat.Conversationwhich raises a lot of NotImplementedErrors. In your subclass, over-
ride the method with a new method whose Class parameter defaults to your own implementation of Conversation,
that simply calls the parent class’ implementation.

Conversation and GroupConversation

These classes are where your interface meets the chat protocol. Chat protocols get a message, find the appropriate
Conversation or GroupConversation object, and call its methods when various interesting things happen.

Override whatever methods you want to get the information you want to display. You must override the hide
and show methods, however - they are called frequently and the default implementation raises NotImplemented
Error.

CHAPTER 1. INTRODUCTION 18

Accounts

An account is an instance of a subclass of basesupport.AbstractAccount. For more details and sample code,
see the various *support files in twisted.im.

Chapter 2

The Basics

2.1 Installing Twisted

2.1.1 Installation
If you are on Windows, you may want to skip this and simply get the Windows Installer version of Twisted from the
download page1.

If you are on Debian. you may want to use the Debian packages. The last stable release of
Twisted is at “deb http://twistedmatrix.com/users/moshez/apt ./”, and the last prerelease of Twisted is at “deb
http://twistedmatrix.com/users/moshez/snapshot ./”

To install Twisted, just make sure the Twisted-$VERSION/ directory is in the PYTHONPATH environment
variable. For example, if you extracted Twisted-1.0.2.tar.gz to /home/bob/, then you would have something like:

export PYTHONPATH=$PYTHONPATH:/home/bob/Twisted-1.0.2/

in your /̃.bash profile, /̃.zshrc, /̃.cshrc, etc. If you use Windows NT, 2000, or XP, then set your
environment variables by right-clicking on My Computer and selecting Properties, then the Advanced tab, and click
on the “Environment Variables” button. If you use some other version of windows, you’ll need to set the variable at a
command prompt, or in autoexec.bat, with the ’set’ command.

If you’d like to install Twisted system-wide on your machine and into the default PYTHONPATH, you can use
setup.py to do so:

python ./setup.py install

Be sure to run setup.py with appropriate privileges (root under Unix).

2.1.2 Optional Compilation
There are a couple of small optional alternative implementations of pieces of Twisted that are in C for increased
performance. If you don’t run the installer, and you need these modules, you’ll need to perform a couple of extra
steps:

1http://www.twistedmatrix.com/products/download

19

CHAPTER 2. THE BASICS 20

$ python ./setup.py build_ext

This will (eventually) generate some shared libraries (cBanana.so, cReactor.so) within a directory tree called
’build’ under the Twisted directory.

If you don’t go on to install the build results into a directory on the $PYTHONPATH, then you will need to create
a couple of symlinks:

$ cd twisted/spread
$ ln -s ../../build/lib.linux-i686-2.1/twisted/spread/cBanana.so cBanana.so
$ cd ../internet
$ ln -s ../../build/lib.linux-i686-2.1/twisted/internet/cReactor.so cReactor.so

The exact details of the symlinks may vary based on your system.

2.1.3 Running Tests
See our unit tests run in a lovely Tkinter GUI, proving that the software is BugFree(TM):

% admin/runtests

(From the directory where Twisted was originally untarred/unzipped to.)
Some of these tests will fail if you don’t have the Crypto packages installed on your system.

2.2 The Basics

2.2.1 Application
Twisted programs usually work with twisted.internet.app.Application. This class usually holds all
persistent configuration of a running server – ports to bind to, places where connections to must be kept or attempted,
periodic actions to do and almost everything else.

Other HOWTOs describe how to write custom code for Applications, but this one describes how to use already
written code (which can be part of Twisted or from a third-party Twisted plugin developer). The Twisted distribution
comes with an assortment of tools to create and manipulate Applications.

Applications are just Python objects, which can be created and manipulated in the same ways as any other
object. In particular, they can be serialized to files. Twisted supports several serialization formats.

2.2.2 Serialization
TAP A Twisted Application Pickle. This format is supported by the native Python pickle support. While not being

human readable, this format is the fastest to load and save.

TAX Twisted contains twisted.persisted.marmalade, a module that supports serializing and deserializing
from a format which follows the XML standard. This format is human readable and editable.

TAS Twisted contains twisted.persisted.aot, a module that supports serializing into Python source. This
has the advantage of using Python’s own parser and being able to later manually add Python code to the file.

CHAPTER 2. THE BASICS 21

2.2.3 mktap and tapconvert
The mktap(1) utility is the main way to create a TAP (or TAX or TAS) file. It can be used to create an Application
for all of the major Twisted server types like web, ftp or IRC. It also supports plugins, so when you install a Twisted
plugin (that is, unpack it into a directory on your PYTHONPATH) it will automatically detect it and use any Twisted
Application support in it. It can create any of the above Application formats.

In order to see which server types are available, use mktap --help. For a given server, mktap --help
<name> shows the possible configuration options. mktap supports a number of generic options to configure the
application – for full details, read the man page.

One important option is --append <filename>. This is used when there is already a Twisted application
serialized to which a server should be added. For example, it can be used to add a telnet server, which would let you
probe and reconfigure the application by telnetting into it.

Another useful utility is tapconvert(1), which converts between all three Application formats.

2.2.4 twistd
Having an Application in a variety of formats, aesthetically pleasing as it may be, does not actually cause anything
to happen. For that, we need a program which takes a “dead” Application and brings life to it. For UNIX systems
(and, until there are are alternatives, for other operating systems too), this program is twistd(1). Strictly speak-
ing, twistd is not necessary – unserializing the application and calling its .run method could be done manually.
twistd(1), however, supplies many options which are highly useful for program set up.

twistd supports choosing a reactor (for more on reactors, see choosing reactor (page 84)), logging to a log-
file, daemonizing and more. twistd supports all Applications mentioned above – and an additional one. Some-
times is is convenient to write the code for building a class in straight Python. One big source of such Python
files is the doc/examples directory. When a straight Python file which defines an Application object called
application is used, use the -y option.

When twistd runs, it records its process id in a twistd.pid file (this can be configured via a command line
switch). In order to shutdown the twistd process, kill that pid (usually you would do kill ‘twisted.pid‘).
When the process is killed in an orderly fashion it will leave behind the “shutdown Application” which is named the
same as the original file with a -shutdown added to its base name. This contains the new configuration information,
as changed in the application.

As always, the gory details are in the manual page.

2.2.5 tap2deb
For Twisted-based server application developers who want to deploy on Debian, Twisted supplies the tap2deb
program. This program wraps a Twisted Application file (of any of the supported formats – Python, source, xml or
pickle) in a Debian package, including correct installation and removal scripts and init.d scripts. This frees the
installer from manually stopping or starting the service, and will make sure it goes properly up on startup and down
on shutdown and that it obeys the init levels.

For the more savvy Debian users, the tap2deb also generates the source package, allowing her to modify and
polish things which automated software cannot detect (such as dependencies or relationships to virtual packages). In
addition, the Twisted team itself intends to produce Debian packages for some common services, such as web servers
and an inetd replacement. Those packages will enjoy the best of all worlds – both the consistency which comes from
being based on the tap2deb and the delicate manual tweaking of a Debian maintainer, insuring perfect integration
with Debian.

CHAPTER 2. THE BASICS 22

Right now, there is a beta Debian archive of a web server available at Moshe’s archive2.

2.3 Configuring and Using the Twisted.Web Server

2.3.1 Installation
To install the Twisted.Web server, you’ll need to have installed Twisted (page 19).

Twisted servers, like the web server, do not have configuration files. Instead, you instantiate the server and store it
into a ’Pickle’ file, web.tap. This file will then be loaded by the Twisted Daemon.

% mktap web --path /path/to/web/content

If you just want to serve content from your own home directory, the following will do:

% mktap web --path ˜/public_html/

Some other configuration options are available as well:

• --port: Specify the port for the web server to listen on. This defaults to 8080.

• --logfile: Specify the path to the log file.

The full set of options that are available can be seen with:

% mktap web --help

2.3.2 Using Twisted.Web
Stopping and Starting the Server

Once you’ve created your web.tap file and done any configuration, you can start the server:

% twistd -f web.tap

You can stop the server at any time by going back to the directory you started it in and running the command:

% kill ‘cat twistd.pid‘

Serving Flat HTML

Twisted.Web serves flat HTML files just as it does any other flat file.

2http://twistedmatrix.com/users/moshez/debian

CHAPTER 2. THE BASICS 23

Resource Scripts

A Resource script is a Python file ending with the extension.rpy, which is required to create an instance of a (subclass
of a) twisted.web.resource.Resource.

Resource scripts have 3 special variables:

• file : The name of the .rpy file, including the full path. This variable is automatically defined and present
within the namespace.

• registry: An object of class static.Registry. It can be used to access and set persistent data keyed by
a class.

• resource: The variable which must be defined by the script and set to the resource instance that will be used
to render the page.

A very simple Resource Script might look like:

from twisted.web import resource
class MyGreatResource(resource.Resource):

def render(self, request):
return "<html>foo</html>"

resource = MyGreatResource()

A slightly more complicated resource script, which accesses some persistent data, might look like:

from twisted.web import resource
from SillyWeb import Counter

counter = registry.getComponent(Counter)
if not counter:

registry.setComponent(Counter, Counter())
counter = registry.getComponent(Counter)

class MyResource(resource.Resource):
def render(self, request):

counter.increment()
return "you are visitor %d" % counter.getValue()

resource = MyResource()

This is assuming you have the SillyWeb.Countermodule, implemented something like the following:

class Counter:

def __init__(self):
self.value = 0

def increment(self):

CHAPTER 2. THE BASICS 24

self.value += 1

def getValue(self):
return self.value

DOM Templates

The DOM Templates system is a system for handling templated content. See its documentation (page 133) for more
details.

Spreadable Web Servers

One of the most interesting applications of Twisted.Web is the distributed webserver; multiple servers can all answer
requests on the same port, using the twisted.spread package for “spreadable” computing. In two different
directories, run the commands:

% mktap web --user
% mktap web --personal [other options, if you desire]

Both of these create a web.tap; you need to run both at the same time. Once you have, go to
http://localhost:8080/your username.twistd/ – you will see the front page from the server you cre-
ated with the --personal option. What’s happening here is that the request you’ve sent is being relayed from the
central (User) server to your own (Personal) server, over a PB connection. This technique can be highly useful for
small “community” sites; using the code that makes this demo work, you can connect one HTTP port to multiple re-
sources running with different permissions on the same machine, on different local machines, or even over the internet
to a remote site.

Serving PHP/Perl/CGI

Everything related to CGI is located in the twisted.web.twcgi, and it’s here you’ll find the classes that you need
to subclass in order to support the language of your (or somebody elses) taste. You’ll also need to create your own
kind of resource if you are using a non-unix operatingsystem (such as Windows), or if the default resources has wrong
pathnames to the parsers.

The following snippet is a .rpy that serves perl-files. Look at twisted.web.twcgi for more examples regard-
ing twisted.web and CGI.

from twisted.web import static, twcgi

class PerlScript(twcgi.FilteredScript):
filter = ’/usr/bin/perl’ # Points to the perl parser

resource = static.File("/perlsite") # Points to the perl website
resource.processors = {".pl": PerlScript} # Files that end with .pl will be

processed by PerlScript
resource.indexNames = [’index.pl’]

CHAPTER 2. THE BASICS 25

Using VHostMonster

It is common to use one server (for example, Apache) on a site with multiple names which then uses reverse proxy (in
Apache, via mod proxy) to different internal web servers, possibly on different machines. However, naive config-
uration causes miscommunication: the internal server firmly believes it is running on “internal-name:port”, and will
generate URLs to that effect, which will be completely wrong when received by the client.

While Apache has the ProxyPassReverse directive, it is really a hack and is nowhere near comprehensive enough.
Instead, the recommended practice in case the internal web server is Twisted.Web is to use VHostMonster.

From the Twisted side, using VHostMonster is easy: just drop a file named (for example) vhost.rpy containing
the following:

from twisted.web import vhost
resource = vhost.VHostMonsterResource()

Of course, an equivalent .trp can also be used. Make sure the web server is configured with the correct processors
for the rpy or trp extensions (the web server mktap web --path generates by default is so configured).

From the Apache side, instead of using the following ProxyPass directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/
ServerName example.com
</VirtualHost>

Use the following directive:

<VirtualHost ip-addr>
ProxyPass / http://localhost:8538/vhost.rpy/http/example.com:80/
ServerName example.com
</VirtualHost>

Here is an example for Twisted.Web’s reverse proxy:

from twisted.internet import app
from twisted.web import proxy, server, vhost
vhostName = ’example.com’
reverseProxy = proxy.ReverseProxyResource(’internal’, 8538,

’/vhost.rpy/http/’+vhostName+’/’)
root = vhost.NamedVirtualHost()
root.addHost(vhostName, reverseProxy)
site = server.Site(root)
application = app.Application(’web-proxy’)
application.listenTCP(80, site)

2.3.3 Rewriting URLs
Sometimes it is convenient to modify the content of the Request object before passing it on. Because this is
most often used to rewrite either the URL, the similarity to Apache’s mod rewrite has inspired the twisted.
web.rewrite module. Using this module is done via wrapping a resource with a twisted.web.rewrite.
RewriterResource which then has rewrite rules. Rewrite rules are functions which accept a request object, and

CHAPTER 2. THE BASICS 26

possible modify it. After all rewrite rules run, the child resolution chain continues as if the wrapped resource, rather
than the RewriterResource, was the child.

Here is an example, using the only rule currently supplied by Twisted itself:

default_root = rewrite.RewriterResource(default, rewrite.tildeToUsers)

This causes the URL /f̃oo/bar.html to be treated like /users/foo/bar.html. If done after setting de-
fault’s users child to a distrib.UserDirectory, it gives a configuration similar to the classical configuration
of web server, common since the first NCSA servers.

2.4 Debugging with Manhole

2.4.1 Creating the Manhole Service
In order to create a manhole server, use a command like mktap manhole -u [username] -w [password].
If you’ve already got a “TAP” for a server, you can use the argument --append [tapname] to mktap to add a
manhole service to that “TAP”.

2.4.2 Using the Manhole PB Client
The second service offered by twisted.manhole is a Perspective Broker -based server. This gives the client a remote
reference to a twisted.manhole.service.Service object, which offers remotely-callable methods to evaluate Python
code. With the rich remote-method-invocation facilities provided by PB, however, much more is possible: the client
can ask to “watch” certain objects, and then will receive messages every time that python object is changed. (this takes
advantage of some twisted.python code that “hooks” some functions, like .setattr). These features are described in
detail below.

With this in place and running, you’re ready to connect with the manhole client. This is a Gtk+-based GUI
application named manhole that gets installed along with the rest of twisted. Execute the command manhole
to start the client, and it will bring up a dialog that asks for hostname, port number, Service name, username, and
password (and also “Perspective” but don’t worry about that for now). Use the default host/port of localhost/8787 to
indicate where the twisted.manhole service is listening, and use boss/sekrit for the username and password. Use
the default Service name “twisted.manhole”, and leave the Perspective blank.

Click the “Log In” button to establish the connection, and you will be greeted with a short message in a window
with an output area in the top, and an input area at the bottom. This is just like the python interpreter accessed through
the telnet shell, but with a different GUI. You can type arbitrary python code into the input area and get the results in
the output area. Note that multi-line sequences are all sent together, so if you define a function (or anything else that
uses indentation to tell the interpreter that you aren’t finished yet), you’ll need to type one additional Return to tell the
client to send off the code.

At this point, you can get access to the main Application object just like you did before with the telnet-based
shell. You can use that to obtain the Service objects inside it, or references to the Factory objects that are listening
on TCP or UDP ports, by doing:

from twisted.internet import app
a = app.theApplication
service = a.getServiceNamed("manhole")
(port, factory, backlog, interface) = a.tcpPorts[0]

After that, you can do anything you want with those objects.

CHAPTER 2. THE BASICS 27

2.4.3 Special Commands
There are a few special commands so far that make debugging Twisted objects really nice. These are /browse and
/watch. You can /browse any type of object, and it will give you some nice information about that object in the
“Spelunking” window that pops up when manhole establishes a connection to the manhole Service. /watch-ing
an object adds hooks to the object, allowing you to watch modifications to it in real time. Try the following in the
manhole window and watch what happens in the “Spelunking” box (word wrapped for clarity):

/browse ["hello", "there"]
<ObjectLink of ["hello", "there"] type list>:
[’hello’,
’there’,]

class A:
def foo(self):

self.x = 1

x = A()
/browse x
<ObjectLink of x type instance>:

{members: {}
class: ’A’
methods: {}}

/watch x
<ObjectLink of x type instance>:
{members: {}
class: ’A’
methods: {}}

x.foo()

<ObjectLink of x type instance>:
{members: {x: 1}
class: ’twisted.python.explorer.WatchingA8195574’
methods:

{foo:
<ObjectLink of x.foo type instance_method>:
{class: ’twisted.python.explorer.WatchingA8195574’
self: ’<twisted.python.explorer.WatchingA8195574 instance at

0x8195574>’
doc:

Pretend to be the method I replaced, and ring the bell.

CHAPTER 2. THE BASICS 28

line: 651
signature:

[{name: instance},
{name: a
list: 1},

{name: kw
keywords: 1},]

file: /home/punck/cvs/Twisted/twisted/python/explorer.py
name: __call__}

}}

<ObjectLink of x type instance>:
{members: {x: 1}
class: ’twisted.python.explorer.WatchingA8195574’
methods:

{foo:
<ObjectLink of x.foo type instance_method>:
{class: ’twisted.python.explorer.WatchingA8195574’
self: ’<twisted.python.explorer.WatchingA8195574 instance at

0x8195574>’
doc:

Pretend to be the method I replaced, and ring the bell.

line: 651
signature:

[{name: instance},
{name: a
list: 1},

{name: kw
keywords: 1},]

file: /home/punck/cvs/Twisted/twisted/python/explorer.py
name: __call__}

}}

TODO: /watch might be broken right now.
As you can see, /watch really gives you a lot of power (and a lot of output, too – hopefully we’ll have a nice

GUI display for this in the future). The /browse and /watch functionality is brought to you by the twisted.
manhole.explorer module, which was written largely by Kevin Turner.

TODO: Add an example using twisted.python.rebuild.rebuild. This lets you tell your application
(remotely) to reload its classes, allowing you to upgrade a running server without missing a beat.

Have fun!

2.5 Creating and working with a telnet server
Run mktap telnet -p 4040 -u admin -w woohoo at your shell prompt. If you list the contents of your
current directory, you’ll notice a new file – telnet.tap. After you do this, run twistd -f telnet.tap. Since

CHAPTER 2. THE BASICS 29

the Application has a telnet server that you specified to be on port 4040, it will start listening for connections on this
port. Try connecting with your favorite telnet utility to 127.0.0.1 port 4040.

$ telnet localhost 4040
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.

twisted.protocols.telnet.ShellFactory
Twisted 0.15.5
username: admin
password: ******
>>>

Now, you should see a Python prompt – >>>. You can type any valid Python code here. Let’s try looking around.

>>> dir()
[’__builtins__’]

Ok, not much. let’s play a little more:

>>> import __main__
>>> dir(__main__)
[’EverythingEphemeral’, ’ServerOptions’, ’__builtins__’, ’__doc__’, ’__name__’,
’application’, ’config’, ’copyright’, ’imp’, ’initRun’, ’load’, ’log’,

’logFile’, ’logPath’, ’logfile’, ’main’, ’mainMod’, ’oldstderr’, ’oldstdin’,
’oldstdout’, ’os’, ’platformType’, ’rotateLog’, ’runtime’, ’signal’, ’string’,
’styles’, ’sys’, ’traceback’, ’usage’, ’util’]

>>> __main__.application
<telnet app>
>>> dir(__main__.application)
[’authorizer’, ’connectors’, ’delayeds’, ’gid’, ’name’, ’persistenceVersion’,
’ports’, ’resolver’, ’running’, ’services’, ’uid’, ’written’]

From this session we learned that there is an application object stored in main that’s a telnet app, and it has
some scary attributes that we’re not going to worry about for now.

Alright, so now you’ve decided that you hate Twisted and want to shut it down. Or you just want to go to
bed. Either way, I’ll tell you what to do. First, disconnect from your telnet server. Then, back at your system’s
shell prompt, type kill ‘cat twistd.pid‘ (the quotes around cat twistd.pid are backticks, not single-
quotes). If you list the contents of your current directory again, you’ll notice that there will be a file named telnet-
shutdown.tap. If you wanted to restart the server with exactly the same state as you left it, you could just run twistd
-f telnet-shutdown.tap. This is why Twisted doesn’t need any sort of configuration files – all the configura-
tion data is stored right in the objects!

Now that you’ve learned how to create a telnet server with ’mktap telnet’, we’ll delve a little deeper and learn how
one is created behind the scenes. Start up a python interpreter and make sure that the ’twisted’ directory is in your
module search path.

CHAPTER 2. THE BASICS 30

Python 1.5.2 (#0, Dec 27 2000, 13:59:38) [GCC 2.95.2 20000220 (Debian
GNU/Linux)] on linux2
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import sys
>>> sys.path.append(’/twisted/Twisted’)

I installed Twisted in /twisted, so the place where my ’twisted’ package directory is at is /twisted/Twisted/twisted
(confusing, I know). For Python to find the ’twisted’ package, it must have the directory containing the package in
sys.path – which is why I added /twisted/Twisted.

>>> from twisted.internet import app, tcp
>>> from twisted.protocols import telnet
>>> application = app.Application(’telnet’)
>>> ts = telnet.ShellFactory()
>>> application.listenTCP(4040, ts)

The above is basically what mktap telnet does. First we create a new Twisted Application, we create a new
telnet Shell Factory, and we tell the application to listen on TCP port 4040 with the ShellFactory we’ve created.

Now let’s start the application. This causes all ports on the application to start listening for incoming connections.
This step is basically what the ’twistd’ utility does.

>>> application.run()
twisted.protocols.telnet.ShellFactory starting on 4040

You now have a functioning telnet server! You can connect with your telnet program and work with it just the
same as you did before. When you’re done using the telnet server, you can switch back to your python console and hit
ctrl-C. The following should appear:

Starting Shutdown Sequence.
Stopping main loop.
Main loop terminated.
Saving telnet application to telnet-shutdown.tap...
Saved.
>>>

Your server was pickled up again and saved to the telnet-shutdown.tap file, just like when you did kill ‘cat
twistd.pid‘.

2.5.1 More Complicated Configuration
Let’s suppose that we have the following application:

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet.protocol import Factory
from twisted.protocols.wire import QOTD

app = Application("demo")

CHAPTER 2. THE BASICS 31

add QOTD server
f = Factory()
f.protocol = QOTD
app.listenTCP(8123, f)

app.run()

Source listing — manhole1.py

Once this is running, it would be nice to poke around inside it. We can add the manhole-shell by adding a few lines
to create a new server (a Factory) listening on a different point:

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet.protocol import Factory
from twisted.protocols.wire import QOTD
import twisted.manhole.telnet

app = Application("demo")

add QOTD server
f = Factory()
f.protocol = QOTD
app.listenTCP(8123, f)

Add a manhole shell
f = twisted.manhole.telnet.ShellFactory()
f.username = "boss"
f.password = "sekrit"
f.namespace[’foo’] = 12
app.listenTCP(8007, f)

app.run()

Source listing — manhole2.py

With this in place, you can telnet to port 8007, give the username “boss” and password “sekrit”, and you’ll end
up with a shell that behaves very much like the Python interpreter that you get by running python all by itself, with
lines you type prefixed with >>>.

% telnet localhost 8007
Trying 127.0.0.1...
Connected to localhost.
Escape character is ’ˆ]’.

CHAPTER 2. THE BASICS 32

twisted.manhole.telnet.ShellFactory
Twisted 0.99.2
username: boss
password: *****
>>>

Note that the original Quote-Of-The-Day server is still running on port 8123 by using nc localhost 8123
(or telnet localhost 8123 if you don’t have netcat installed).

% nc localhost 8123
An apple a day keeps the doctor away.

The initial namespace of the manhole interpreter is defined by a dictionary stored in the ’namespace’ at-
tribute of the ShellFactory. For convenience, you can put references to any objects you like in that dict (f.
namespace[’foo’] = 12), and then retrieve them by name from the telnet session.

>>> foo
12

Of course we can change that namespace by evaluating expressions in the interpreter. To be a useful debugging
tool, however, we want to get access to our servers (the protocol Factory instances and everything hanging off of
them). We start by gaining access to the main Application instance through a global variable stored in the app
module:

>>> import twisted.internet.app
>>> a = twisted.internet.app.theApplication
>>> a
<’demo’ app>

This object holds three things of interest: the list of Delayeds (functions scheduled to run some number of seconds
in the future), the list of Services (subclasses of ApplicationService that have been added to the application, most
notably Perspective Broker services), and the list of ports on which protocol Factories are listening. The ports are kept
in a list, and the Factory object itself is available inside that list (word wrapped for clarity):

>>> a.tcpPorts
[(8123, <twisted.internet.protocol.Factory instance at 0x8249b8c>, 5, ’’),
(8007, <twisted.manhole.telnet.ShellFactory instance at 0x824aefc>, 5, ’’)
]
>>> f = a.tcpPorts[0][1]
>>> f
<twisted.internet.protocol.Factory instance at 0x8249b8c>

Now that we have access to that Factory, what can we do? We can modify any attribute of the object, or call
functions on it. Remember that the Factory stores a reference to a subclass of Protocol, and it uses that reference
to create new Protocol instances for each new connection. We can change that reference to make the Factory create
something else:

>>> f.protocol
<class twisted.protocols.wire.QOTD at 0x824a66c>
>>> from twisted.protocols.wire import Daytime
>>> f.protocol = Daytime

CHAPTER 2. THE BASICS 33

Congratulations, you’ve just changed the Factory to use the Daytime protocol instead of the QOTD protocol. You
have just transformed the QOTD server into a Daytime server. Connect to port 8123 now and see the difference: you
get a timestamp instead of a quote:

% nc localhost 8123
Sat Sep 28 09:11:37 2002

From here, you can do anything you want to your application. It is a good idea to check the source for the
Application and Service classes to see what else you can extract from them.

Note: to terminate your session, you’ll need to exit the telnet or netcat program (the usual control-D that works
in the Python interpreter won’t work here). Try control-] for telnet. Also note that any exceptions caused by your
manhole session will be displayed both in the telnet session and in the stderr on the application side.

Chapter 3

High-Level Twisted

3.1 Asynchronous Programming

3.1.1 Introduction
There are many ways to write network programs. The main ones are:

1. Handle each connection in a separate process

2. Handle each connection in a separate thread1

3. Use non-blocking system calls to handle all connections in one thread.

When dealing with many connections in one thread, the scheduling is the responsibility of the application, not the
operating system, and is usually implemented by calling a registered function when each connection is ready to for
reading or writing – commonly known as asynchronous, event-driven or callback-based programming.

Multi-threaded programming is tricky, even with high level abstractions, and Python’s Global Interpreter Lock2

limits the potential performance gain. Forking Python processes also has many disadvantages, such as Python’s
reference counting not playing well with copy-on-write and problems with shared state. Consequently, it was felt
the best option was an event-driven framework. A benefit of such an approach is that by letting other event-driven
frameworks take over the main loop, server and client code are essentially the same – making peer-to-peer a reality.

However, event-driven programming still contains some tricky aspects. As each callback must be finished as soon
as possible, it is not possible to keep persistent state in function-local variables. In addition, some programming
techniques, such as recursion, are impossible to use – for example, this rules out protocol handlers being recursive-
descent parsers. Event-driven programming has a reputation of being hard to use due to the frequent need to write
state machines. Twisted was built with the assumption that with the right library, event-driven programming is easier
than multi-threaded programming.

Note that Twisted still allows the use of threads if you really need them, usually to interface with synchronous
legacy code. See Using Threads (page 82) for details.

1There are variations on this method, such as a limited-size pool of threads servicing all connections, which are essentially just optimizations of
the same idea.

2http://www.python.org/doc/current/api/threads.html

34

CHAPTER 3. HIGH-LEVEL TWISTED 35

3.1.2 Async Design Issues
In Python, code is often divided into a generic class calling overridable methods which subclasses implement. In that,
and similar, cases, it is important to think about likely implementations. If it is conceivable that an implementation
might perform an action which takes a long time (either because of network or CPU issues), then one should design
that method to be asynchronous. In general, this means to transform the method to be callback based. In Twisted, it
usually means returning a Deferred (page 72).

Since non-volatile state cannot be kept in local variables, because each method must return quickly, it is usually
kept in instance variables. In cases where recursion would have been tempting, it is usually necessary to keep stacks
manually, using Python’s list and the .append and .pop method. Because those state machines frequently get non-
trivial, it is better to layer them such that each one state machine does one thing – converting events from one level of
abstraction to the next higher level of abstraction. This allows the code to be clearer, as well as easier to debug.

3.1.3 Using Reflection
One consequence of using the callback style of programming is the need to name small chunks of code. While this
may seem like a trivial issue, used correctly it can prove to be an advantage. If strictly consistent naming is used, then
much of the common code in parsers of the form of if/else rules or long cases can be avoided. For example, the SMTP
client code has an instance variable which signifies what it is trying to do. When receiving a response from the server,
it just calls the method "do %s %s" % (self.state, responseCode). This eliminates the requirement for
registering the callback or adding to large if/else chains. In addition, subclasses can easily override or change the
actions when receiving some responses, with no additional harness code. The SMTP client implementation can be
found in twisted/protocols/smtp.py.

3.2 Using app.Application

3.2.1 Motivation
Calling reactor methods (like .listenTCP and .run) directly, as in the examples in Writing Servers (page 58),
is a good way to immediately demonstrate the use of Factories and Protocols. But you would ask for more from a
fully-fledged, easy-to-run, easy-to-configure Internet Server (with capital I and S). To be precise, your users (defined
as someone who wants to install your server without knowing all the details of how it works) will ask for more from
it. Twisted provides this for you.

What more could we want from our little test program? Well:

• configuration arguments:

suppose your QOTD server behaves a bit more like the normal port 17 server and pulls a random line from
/usr/share/fortunes. Your QOTDFactory() might take a filename to indicate where the QOTD protocols
should pull these lines. It would be nice if the person installing your quote server didn’t have to modify any
Python code to change where this file should be found.

Likewise, what if they want it to listen on some other port? That shouldn’t require editing the code.

• starting/stopping and persistence:

If your protocol demands that you keep some state from one invocation of the server to the next, you’ll need to
save some information before the server shuts down, and to restore it again when you start back up.

CHAPTER 3. HIGH-LEVEL TWISTED 36

Suppose your protocol’s purpose in life is to generate one-time keys, and that people can connect to it to retrieve
a single-use key. (Don’t ask me why they might want to do this. Security is such a weird big thing that chances
are somebody out there will want to do something that’s probably pretty dumb when you think about it carefully).
The important thing is that you never give out the same key twice. So you have to remember a sequence number,
and each time you give out a key, you bump up the number. Before you shut down, you save the number to a
file somewhere; at start up, if the file exists you read the number from it, if it doesn’t exist, you start at 0. (an
example is included below)

This kind of persistent data is a common need, and many kinds of servers require it. Hence Twisted provides an
easy way to record and reload this data.

This functionality is provided by the Application class (defined in twisted/internet/app.py). You create an Appli-
cation with a constructor like any other object. Then you tell the app to listen to ports (just like you told the reactor to
in the previous example), providing a Factory on each one. The difference is that the App won’t starting listening on
those ports right away, but will wait until it starts to run.

When you’re done setting up the ports, you have two options: you can start running the app immediately, by
calling the .run() method, or you can save the Application out to a file by calling the .save() method. The saved
application can then be started later by using the twistd utility.

3.2.2 Example Application
Here is a short example of the first option, running the server immediately. This example uses the pre-defined Daytime
protocol, which simply sends the current time to each client.:

#! /usr/bin/python

import twisted.internet.app
from twisted.protocols.wire import Daytime
from twisted.internet.protocol import Factory

app = twisted.internet.app.Application("daytimer")
f = Factory()
f.protocol = Daytime
app.listenTCP(8813, f)

app.run()

Source listing — app1.py

This program will start listening to port 8813 in the app.run() call, and won’t return from that call until the
server is terminated (probably when you send it SIGINT).

To use the second option and launch the server later, just use .save() instead of .run(). The .save()
method takes a base name for the generated .tap file:

...
app.listenTCP(8813, f)

app.save("start")

CHAPTER 3. HIGH-LEVEL TWISTED 37

When you run this program, it will create a file called daytime-start.tap, and then exit. (The name is
obtained by combining the application name with the argument to .save()). To start the server from the “freeze-
dried”.tap file, use twistd (text wrapped to be more readable):

% ./app2.py
Saving daytimer application to daytimer-start.tap...
Saved.
% twistd -f daytimer-start.tap
% tail twistd.log
30/09/2002 01:38 [-] Log opened.
30/09/2002 01:38 [-] twistd 0.99.2 (/usr/bin/python2.2 2.2.1) starting up
30/09/2002 01:38 [-] license user: Nobody <>
30/09/2002 01:38 [-] organization: No Organization
30/09/2002 01:38 [-] reactor class: twisted.internet.default.SelectReactor
30/09/2002 01:38 [-] Loading daytimer-start.tap...
30/09/2002 01:38 [-] Loaded.
30/09/2002 01:38 [*daytimer*] twisted.internet.protocol.Factory starting on 8813
30/09/2002 01:38 [*daytimer*] Starting factory
<twisted.internet.protocol.Factory instance at 0x81ac9fc>
%

That will “thaw out” the .tap file, create the Application, and then run it just as if you’d invoked app.run()
yourself. It forks the new server off into the background (so twistd itself completes instead of waiting for the server to
die), writes the server’s process ID to a file called twistd.pid, and directs all the server’s stdout messages to a file
called twistd.log (these file names can be changed by appropriate arguments to twistd: see twistd -h for a
list).

When you try this example, be aware that twistd returns right away, but it takes a second or two for the server
to actually start. The twistd.pid file won’t be created until it does. Wait a moment before doing ls or netstat,
or you’ll think that the server failed to start. If it persists in failing, look in twistd.log for details. Remember that
trying to bind to a reserved port will fail unless you’re root, and the exception will be listed at the end of the log file.

To kill the server, just do:

% kill ‘cat twistd.pid‘

When the server is shut down, you’ll notice that it creates a file called daytimer-shutdown.tap in the
directory it was run from (again, the name is derived from the application name and the word “shutdown”). This
.tap file is just like the daytimer-start.tap created by your original setup program, except that it represents
the state of the Application object as it existed just before shutdown, rather than when it was freshly created by your
code.

Also note that the twistd.pid file is automatically deleted when the application shuts down.

3.2.3 Saving State Across Sessions: Adding Persistent Data
You can add persistent data (like that sequence number described above) to the protocol Factory object, and it will
get saved in the -shutdown.tap file. Then, if you restart the server with twistd -f daytimer-shutdown.
tap, the new server will get the data saved by the old server, and it can pick up where the old one left off, as if the
server had been running continuously the whole time.

CHAPTER 3. HIGH-LEVEL TWISTED 38

To take advantage of this, simply add the attributes you want to the Factory, or to your subclass of Service (see
the docs on Perspective Broker for details about Services). When the application terminates, it simply pickles up the
whole Application (and everything it references, including Factories and Services). Any attributes or objects you have
added will be saved and later restored.

Here is an example:

#! /usr/bin/python

from twisted.internet.protocol import Protocol, Factory

class OneTimeKey(Protocol):
def connectionMade(self):

key = self.factory.nextkey
print "giving key", key
self.factory.nextkey += 1
self.transport.write("%d\n" % key)
self.transport.loseConnection()

def main():
namespaces are weird. See the comment in doc/examples/echoserv.py
import app3
from twisted.internet.app import Application
f = Factory()
f.protocol = app3.OneTimeKey
f.nextkey = 0
app = Application("otk")
app.listenTCP(8123, f)
app.save("start")

if __name__ == ’__main__’:
main()

Source listing — app3.py

To demonstrate this, do the following:

% ./app3.py
Saving otk application to otk-start.tap...
Saved.
% twistd -f otk-start.tap
%
% nc localhost 8123
0
% nc localhost 8123
1
% nc localhost 8123

CHAPTER 3. HIGH-LEVEL TWISTED 39

2
%

Note that the stdout of the process is being directed into the log file, contained in twistd.log. Now stop the
server, verify that it is no longer running, then restart it from the saved-at-shutdown .tap file:

% kill ‘cat twistd.pid ‘
% nc localhost 8123
localhost [127.0.0.1] 8123 (?) : Connection refused
% twistd -f otk-shutdown.tap
% nc localhost 8123
3
%

Notice how the saved .nextkey attribute was restored, and the application picks up where it left off.

3.2.4 Configuration arguments
To do this right, you’ll want to follow the sequence described by the writing plugins (page 40) document. Instead of
writing a short program that creates a .tap file (by creating an Application, doing various .listenTCPs on it, then
calling .save), you will write a subroutine called updateApplication(). This subroutine should take a bunch of config
arguments (using the usage.Options class described in the plugins document) and use them to create Factories and feed
them to .listenTCP on an existing Application instance.

With that in place, and a few files to register this new server you’ve created, a utility program called ’mktap’
can relieve you of the business of gathering user arguments and creating the app instance. mktap can use the Op-
tions subclass you define in your build-a-tap class to figure out what arguments are legal (--port taking a num-
ber, --quotes taking a filename, etc), provide --help with a list of valid arguments, and parse everything the
user passes in argv[]. It creates the Application, then passes the app and the parsed options to your update
Application()method, where you do the server-specific creation of a Factory and the various listenTCP calls.
Then mktap saves out the .tap file, ready for starting by twistd.

The end result is that installing your new server is simplified to the following steps:

• Unpack your server module (including the classes and plugin glue files) into somewhere on your PYTHON-
PATH, perhaps /usr/local/lib/python.

• Run the standard mktap program, giving it the name of your module and whatever configuration arguments it
requires. Watch it create a .tap file.

• Use twistd to start the server contained in the .tap file.

Pretty easy. At least your users will think so.
And, once your application is defined by the .tap file, there are other tools that can be used to configure it.

tap2deb is a tool that creates installable Debian .deb packages from your .tap file, making installation even
easier.

The Application object has some other features designed to solve common server needs:

• logging is controlled, through the log.Logger class

• delayed events can be scheduled, with the .addDelayed() method

CHAPTER 3. HIGH-LEVEL TWISTED 40

• the process can switch to a different uid/gid after binding reserved ports

• styles.Versioned allows old saved copies of an object to be upgraded when new versions of the class are available

• Applications have Authorizers, used to authenticate client connections

• Applications have Services, which can be accessed by PB clients

3.3 Writing a New Plug-In for Twisted

3.3.1 Getting Started
Twisted is a very general and powerful tool. It can power anything connected to a network, from your corporate
message-broadcasting network to your desktop IRC client. This is great for integrating lots of different tools, but can
make it very difficult to document and understand how the whole platform is supposed to work. A side effect of this is
that it’s hard to get started with a project using Twisted, because it’s hard to find out where to start.

This guide is to help you understand the “right way” to get started working on a Twisted application. It probably
won’t answer your specific questions about how to do things like schedule functions to call in the future (page 81)
or listen on a socket (page 58); there are other documents that address these concerns and you can read them later.
Although there are other ways for Twisted to call your code, all Twisted projects should start as a plug-in of some kind.

3.3.2 Twisted and You: Where Does Your Code Fit In?
If you’re like most people that have asked me questions about this, you’ve probably come to Twisted thinking of it as
a library of code to help you write an application. It can be, but it is much more useful to think of your code as the
library. Twisted is a framework.

The difference between a framework and a library is that a developer’s code will run a library’s functions; a
framework runs the developer’s functions, instead. The difference is subtle, but significant; there are a range of
resources which have to be allocated and managed regarding start-up and shut-down of an process, such as spawning
of threads and handling events. You don’t have to use Twisted this way. It is quite possible to write applications that
use Twisted almost exclusively as a library. If you use it as a framework, though, Twisted will help you by managing
these resources itself.

The central framework class that you will deal with, both as a Twisted developer and administrator, is twisted.
internet.app.Application. There is one Application instance per Twisted process, and it is the top-level
manager of resources and handler of events in the Twisted framework. (Unlike some other frameworks, developers
do not subclass Application; rather than defining methods on it, you register event handlers to be called by it.)
To store configuration data, as well as other information, Twisted serializes Application instances, storing all
event handlers that have been registered with them. Since the whole Application instance is serialized, Twisted
“configuration” files are significantly more comprehensive than those for other systems. These files store everything
related to a running Application instance; in essence the full state of a running process.

The central concept that a Twisted system administrator will work with are files that contain Application
instances serialized in various formats optimized for different uses. .TAP files are optimized for speed of loading
and saving, .TAX files are editable by administrators familiar with XML syntax, and .TAS files are generated Python
source code, most useful for developers. The two command-line programs which work with these files are mktap and
twistd. The mktap utility create .TA* files from simple command-line arguments, and the twistd daemon will
load and run those files.

CHAPTER 3. HIGH-LEVEL TWISTED 41

There are many ways in which your code will be called by various parts of the Twisted framework by the time
you’re done. The initial one we’re going to focus on here is a plug-in for the mktap utility. mktap produces complete,
runnable Application instances, so no additional work is necessary to make your code work with twistd. First
we will go through the process of creating a plug-in that Twisted can find, then we make it adhere to the mktap
interface. Finally we will load that plug-in with a server.

3.3.3 What is a Plug-In?
Python makes it very easy to dynamically load and evaluate programs. The plug-in system for Twisted, twisted.
python.plugin, is a way to find (without loading) and then load plug-ins for particular systems.

Unlike other “plug-in” systems, like the well known ones associated with The Gimp, Photoshop, and Apache
twisted.python.plugin is generic. Any one of the Twisted “dot-products”3 can define mechanisms for ex-
tensibility using plug-ins. Two Twisted dot-products already load such plug-ins. The twisted.tappackage loads
Twisted Application builder modules (TAP plug-ins) and the twisted.coil package loads configuration modules
(COIL plug-ins).

Twisted finds its plug-ins by using pre-existing Python concepts; the load path, and packages. Every top-level
Python package4 (that is, a directory whose parent is on sys.path and which contains an init .py) can poten-
tially contain some number of plug-ins. Packages which contain plug-ins are called “drop-ins”, because you “drop”
them into your sys.path. The only difference between a package and a drop-in is the existence of a file named
plugins.tml (TML for Twisted Module List) that contains some special Python expressions to identify the loca-
tion of sub-packages or modules which can be loaded.

If you look at twisted/plugins.tml, you will notice that Twisted is a drop-in for itself! You can browse
through it for lots of examples of plug-ins being registered.

The most prevalent kind of plug-in is the TAP (Twisted Application builder) type. These are relatively simple to
get started with. Let’s look at an excerpt from Twisted’s own plugins.tml for an example of registering one:

...

register("Twisted Web Automated TAP builder",
"twisted.tap.web",
description="""
Builds a Twisted Application instance that contains a general-purpose
web server, which can serve from a filesystem or application resource.
""",
type="tap",
tapname="web")

...

plugins.tml will be a list of calls to one function:

register(name, module, type=plugin_type,
description=user_description
[, **plugin_specific_data])

3http://twistedmatrix.com/products/dot-products
4http://www.python.org/doc/current/tut/node8.html#SECTION008400000000000000000

CHAPTER 3. HIGH-LEVEL TWISTED 42

• name is a free-form string, to be displayed to the user in presentation contexts (like a web page, or a list-box in
a GUI).

• module is a string which must be the fully-qualified name of a Python module.

• type is the name of the system you are plugging in to. Be sure to spell this right, or Twisted won’t find your
plug-in at all!

• **plugin specific data is a dictionary of information associated with the plug-in, specific to the type
of plug-in it is. Note that some plug-in types may require a specific bit of data in order to work.

Note the tapname parameter given in the example above. This parameter is an example of
**plugin specific data. The parameter tapname is only used by "tap"-type modules. It indicates what
name to use on the mktap command line. In English, this particular call to register means “When the user types
mktap web, it selects the module twisted.tap.web to handle the rest of the arguments”.

Now that you understand how to register a plug-in, let’s move along to writing your first one.

3.3.4 Twisted Quotes: A Case Study
As an example, we are going to work on a Quote of the Day application, TwistedQuotes. Aspects of this applica-
tion will be explored in more depth throughout in the Twisted documentation.

TwistedQuotes is a very simple plugin which is a great demonstration of Twisted’s power. It will export a small
kernel of functionality – Quote of the Day – which can be accessed through every interface that Twisted supports: web
pages, e-mail, instant messaging, a specific Quote of the Day protocol, and more.

Before you Begin

First, make a directory, TwistedQuotes, where you’re going to keep your code. If you installed Twisted from
source, the path of least resistance is probably just to make a directory inside your Twisted-X.X.X directory,
which will already be in your sys.path. If you want to put it elsewhere, make sure that your TwistedQuotes
directory is a package on your python path.

Note:
The directory you add to your PYTHONPATH needs to be the directory containing your package’s

directory! For example, if your TwistedQuotes directory is /my/stuff/TwistedQuotes, you can export
PYTHONPATH=/my/stuff:$PYTHONPATH in UNIX, or edit the PYTHONPATH environment vari-
able to add /my/stuff; at the beginning through the System Properties dialog on Windows.

You will then need to add an init .py to this directory, to mark it as a package. (For more information
on exactly how Python packages work, read this section5 of the Python tutorial.) In order to test that everything is
working, start up the Python interactive interpreter, or your favorite IDE, and verify that the package imports properly.

Python 2.1.3 (#1, Apr 20 2002, 22:45:31)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2
Type "copyright", "credits" or "license" for more information.
>>> import TwistedQuotes
>>> # No traceback means you’re fine.

5http://www.python.org/doc/current/tut/node8.html#SECTION008400000000000000000

CHAPTER 3. HIGH-LEVEL TWISTED 43

A Look at the Heart of the Application

(You’ll need to put this code into a file called quoters.py in your TwistedQuotes directory.)

from twisted.python import components

from random import choice

class IQuoter(components.Interface):
"""An object that returns quotes."""

def getQuote(self):
"""Return a quote."""

class StaticQuoter:
"""Return a static quote."""

__implements__ = IQuoter

def __init__(self, quote):
self.quote = quote

def getQuote(self):
return self.quote

class FortuneQuoter:
"""Load quotes from a fortune-format file."""

__implements__ = IQuoter

def __init__(self, filenames):
self.filenames = filenames

def getQuote(self):
return choice(open(choice(self.filenames)).read().split(’\n%\n’))

Twisted Quotes Central Abstraction — quoters.py

This code listing shows us what the Twisted Quotes system is all about. The code doesn’t have any way of talking
to the outside world, but it provides a library which is a clear and uncluttered abstraction: “give me the quote of the
day”.

Note that this module does not import any Twisted functionality at all! The reason for doing things this way is
integration. If your “business objects” are not stuck to your user interface, you can make a module that can integrate
those objects with different protocols, GUIs, and file formats. Having such classes provides a way to decouple your
components from each other, by allowing each to be used independently.

CHAPTER 3. HIGH-LEVEL TWISTED 44

In this manner, Twisted itself has minimal impact on the logic of your program. Although the Twisted “dot
products” are highly interoperable, they also follow this approach. You can use them independently because they are
not stuck to each other. They communicate in well-defined ways, and only when that communication provides some
additional feature. Thus, you can use twisted.web with twisted.enterprise, but neither requires the other,
because they are integrated around the concept of Deferreds (page 72). (Don’t worry we’ll get to each of those features
in later documentation.)

Your Twisted applications should follow this style as much as possible. Have (at least) one module which imple-
ments your specific functionality, independant of any user-interface code.

Next, we’re going to need to associate this abstract logic with some way of displaying it to the user. We’ll do this
by writing a Twisted server protocol, which will respond to the clients that connect to it by sending a quote to the
client and then closing the connection. Note: don’t get too focused on the details of this – different ways to interface
with the user are 90% of what Twisted does, and there are lots of documents describing the different ways to do it.

(You’ll need to put this code into a file called quoteproto.py in your TwistedQuotes directory.)

from twisted.internet.protocol import Factory, Protocol
from twisted.internet.app import Application

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quoter.getQuote()+’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quoter):
self.quoter = quoter

Twisted Quotes Protocol Implementation — quoteproto.py

This is a very straightforward Protocol implementation, and the pattern described above is repeated here. The
Protocol contains essentially no logic of its own, just enough to tie together an object which can generate quotes (a
Quoter) and an object which can relay bytes to a TCP connection (a Transport). When a client connects to this
server, a QOTD instance is created, and its connectionMade method is called.

The QOTDFactory’s role is to specify to the Twisted framework how to create a Protocol instance that will
handle the connection. Twisted will not instantiate a QOTDFactory; you will do that yourself later, in the mktap
plug-in below.

Note: you can read more specifics of Protocol and Factory in the Writing Servers (page 58) HOWTO.
Once we have an abstraction – a Quoter – and we have a mechanism to connect it to the network – the QOTD

protocol – the next thing to do is to put the last link in the chain of functionality between abstraction and user. This
last link will allow a user to choose a Quoter and configure the protocol.

Practically speaking, this link is an interface for a savvy user who will run the server. (In this case, you; when you
have more users, a system administrator.) For the purposes of this example we will first implement a mktap interface.
Like most system administrator tools, this is command-line oriented. (It is possible to implement a graphical front-end
to mktap, using the same plug-in structure, but this has not been done yet.)

CHAPTER 3. HIGH-LEVEL TWISTED 45

Creating the extension to mktap is done through implementing a module that follows the mktap plug-in interface,
and then registering it to be found and loaded by twisted.python.plugin. As described above, registration is
done by adding a call to register in the file TwistedQuotes/plugins.tml

(You’ll need to put this code into a file called quotetap.py in your TwistedQuotes directory.)

from TwistedQuotes import quoteproto # Protocol and Factory
from TwistedQuotes import quoters # "give me a quote" code

from twisted.python import usage # twisted command-line processing

class Options(usage.Options):
optParameters = [["port", "p", 8007,

"Port number to listen on for QOTD protocol."],
["static", "s", "An apple a day keeps the doctor away.",
"A static quote to display."],

["file", "f", None,
"A fortune-format text file to read quotes from."]]

def updateApplication(app, config):
if config["file"]: # If I was given a "file" option...

Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])

else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config[’static’])

port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory
Finally, set up our factory, with its custom quoter, to create QOTD
protocol instances when events arrive on the specified port.
app.listenTCP(port, factory)

Twisted Quotes TAP construction module — quotetap.py

This module has to conform to a fairly simple interface. It must have a class called Optionswhich is a subclass of
twisted.python.usage.Options. It must also have a function updateApplication(app, config),
which will be passed an instance of a twisted.internet.app.Applicationand an instance of the Options
class defined in the module itself, TwistedQuotes.quotetap.Options. Command-line options given on the
mktap command line fill in the values in Options and are used in updateApplication to make the actual
connections between objects.

A more detailed discussion of twisted.python.usage.Options can be found in the document Using
usage.Options (page 51).

Now that we’ve implemented all the necessary pieces, we can finish putting them together by writing a TML file
which allows the mktap utility to find our protocol module.

register("Quote of the Day TAP Builder",
"TwistedQuotes.quotetap",
description="""

CHAPTER 3. HIGH-LEVEL TWISTED 46

Example of a TAP builder module.
""",
type="tap",
tapname="qotd")

Twisted Quotes Plug-in registration — plugins.tml

Now the QOTD server is ready to be instantiated! Let’s start up a server and get a quote from it.

% mktap qotd
Saving qotd application to qotd.tap...
Saved.
% twistd -f qotd.tap
% nc localhost 8007
An apple a day keeps the doctor away.
% kill ‘cat twistd.pid‘

Let’s walk through the above example. First, we run mktap specifying the Application type (qotd) to create.
mktap reads in our plugins.tml file, instantiates an Application object, fills in the appropriate data, and
serializes it out to a qotd.tap file. Next, we launch the server using the twistd daemon, passing qotd.tap as
a command line option. The server launches, listens on the default port from quotetap.py. Next, we run nc to
connect to the running server. In this step, the QOTDFactory creates a Quoter instance, which responds to our
network connection by sending a quote string (in this case, the default quote) over our connection, and then closes the
connection. Finally, we shutdown the server by killing it via a saved out process id file.

(nc is the netcat6 utility, which no UNIX system should be without.)
So we just saw Twisted in action as a framework. With relatively little code, we’ve got a server that can respond

to a request over a network, with two potential alternative back-ends (fortune files and static text).
After reading this (and following along with your own example, of course), you should be familiar with the process

of getting your own Twisted code with unique functionality in it running inside of a server. You should be familiar
with the concept of a drop-in and a plug-in, and understand both how to create them and how to install them from
other people on your system.

By following the rules set out at the beginning of this HOWTO, we have accidentally implemented another piece
of useful functionality.

% mktap
Usage: mktap [options] <command> [command options]

Options:
-x, --xml DEPRECATED: same as --type=xml
-s, --source DEPRECATED: same as --type=source
-e, --encrypted Encrypt file before writing
-p, --progress Show progress of plugin loading
-d, --debug Show debug information for plugin loading
-u, --uid= [default: 1000]
-g, --gid= [default: 1000]
-a, --append= An existing .tap file to append the plugin to, rather than

6http://www.atstake.com/research/tools/index.html#network utilities

CHAPTER 3. HIGH-LEVEL TWISTED 47

creating a new one.
-t, --type= The output format to use; this can be ’pickle’, ’xml’, or

’source’. [default: pickle]
--help display this message

Commands:
coil A web-based configuration manager.
ftp An FTP server.
im A multi-protocol chat client.
inetd
issues Bug reporting/tracking service.
mail An email service.
manhole An interactive remote debugger service.
news News Server
parent Parent service.
pinger Zoot Pinger TAP builder module
ponger Zoot Ponger TAP builder module
portforward A simple port-forwarder.
qotd Example of a TAP builder module.
sister Sister service.
socks A SOCKSv4 proxy service.
ssh
telnet A simple, telnet-based remote debugging service.
toc An AIM TOC service.
web A general-purpose web server which can serve from a

filesystem or application resource.
words A chat service.
zoot Zoot TAP builder module

Not only does our Options class get instantiated by mktap directly, the user can query mktap for interactive
help! This is just one small benefit to using Twisted as it was designed. As more tools that use the tap style of plug-in,
more useful functionality will become available from Twisted Quotes. For example, a graphical tool could provide
not just help messages at the command line, but a listing of all available TAP types and forms for each, for the user to
enter information.

It is this kind of power that results from using a dynamic, powerful framework like Twisted. I hope that you take
your newfound knowledge and discover all kinds of cool things like this that you get for free just by using it!

The plug-in system is a relatively new part of Twisted, and not as many things use it as they should yet. Watch this
space for new developments regarding plug-ins, other systems that you can plug your code into, and more documen-
tation for people wanting to write systems that can be plugged in to!

3.4 Twisted Enterprise Row Objects
The twisted.enterprise.rowmodule is a method of interfacing simple python objects with rows in relational
database tables. It has two components: the RowObject class which developers sub-class for each relational table
that their code interacts with, and the Reflector which is responsible for updates, inserts, queries and deletes
against the database.

CHAPTER 3. HIGH-LEVEL TWISTED 48

The row module is intended for applications such as on-line games, and web-site that require a back-end database
interface. It is not a full functioned object-relational mapper for python - it deals best with simple data types structured
in ways that can be easily represented in a relational database. It is well suited to building a python interface to an
existing relational database, and slightly less suited to added database persistance to an existing python application.

3.4.1 Class Definitions
To interface to relational database tables, the developer must create a class derived from the twisted.
enterprise.row.RowObject class for each table. These derived classes must define a number of class at-
tributes which contains information about the database table that class corresponds to. The required class attributes
are:

• rowColumns - list of the column names and types in the table with the correct case

• rowKeyColumns - list of key columns in form: [(columnName, typeName)]

• rowTableName - the name of the database table

There are also two optional class attributes that can be specified:

• rowForeignKeys - list of foreign keys to other database tables in the form: [(tableName, [(child
ColumnName, childColumnType), ...], [(parentColumnName, parentColumnType),
...], containerMethodName, autoLoad]

• rowFactoryMethod - a method that creates instances of this class

For example:

class RoomRow(row.RowObject):
rowColumns = [("roomId", "int"),

("town_id", "int"),
("name", "varchar"),
("owner", "varchar"),
("posx", "int"),
("posy", "int"),
("width", "int"),
("height", "int")]

rowKeyColumns = [("roomId", "int4")]
rowTableName = "testrooms"
rowFactoryMethod = [testRoomFactory]

The items in the rowColumns list will become data members of classes of this type when they are created by the
Reflector.

3.4.2 Initialization
The initialization phase builds the SQL for the database interactions. It uses the system catalogs of the database to do
this, but requires some basic information to get started. The class attributes of the classes derived from RowClass are
used for this. Those classes are passed to a Reflector when it is created.

CHAPTER 3. HIGH-LEVEL TWISTED 49

There are currently two available reflectors in Twisted Enterprise, the SQL Reflector for relational databases which
uses the python DB API, and the XML Reflector which uses a file system containing XML files. The XML reflector
is currently extremely slow.

An example class list for the RoomRow class we specified above using the SQLReflector:

from twisted.enterprise.sqlreflector import SQLReflector

dbpool = adbapi.ConnectionPool("pyPgSQL.PgSQL")
reflector = SQLReflector(dbpool, [RoomRow])

3.4.3 Creating Row Objects
There are two methods of creating RowObjects - loading from the database, and creating a new instance ready to be
inserted.

To load rows from the database and create RowObject instances for each of the rows, use the loadObjectsFrom
method of the Reflector. This takes a tableName, an optional “user data” parameter, and an optional “where clause”.
The where clause may be omitted which will retrieve all the rows from the table. For example:

def gotRooms(rooms):
for room in rooms:

print "Got room:", room.id

d = reflector.loadObjectsFrom("testrooms",
whereClause=[("id", reflector.EQUAL, 5)])

d.addCallback(gotRooms)

For more advanced RowObject construction, loadObjectsFrom may use a factoryMethod that was specified as a
class attribute for the RowClass derived class. This method will be called for each of the rows with the class object, the
userData parameter, and a dictionary of data from the database keyed by column name. This factory method should
return a fully populated RowObject instance and may be used to do pre-processing, lookups, and data transformations
before exposing the data to user code. An example factory method:

def testRoomFactory(roomClass, userData, kw):
newRoom = roomClass(userData)
newRoom.__dict__.update(kw)
return newRoom

The last method of creating a row object is for new instances that do not already exist in the database table. In this
case, create a new instance and assign its primary key attributes and all of its member data attributes, then pass it to
the insertRow method of the Reflector. For example:

newRoom = RoomRow()
newRoom.assignKeyAttr("roomI", 11)
newRoom.town_id = 20
newRoom.name = ’newRoom1’
newRoom.owner = ’fred’
newRoom.posx = 100
newRoom.posy = 100

CHAPTER 3. HIGH-LEVEL TWISTED 50

newRoom.width = 15
newRoom.height = 20
reflector.insertRow(newRoom).addCallback(onInsert)

This will insert a new row into the database table for this new RowObject instance. Note that the assignKey
Attr method must be used to set primary key attributes - regular attribute assignment of a primary key attribute of a
rowObject will raise an exception. This prevents the database identity of RowObject from being changed by mistake.

3.4.4 Relationships Between Tables
Specifying a foreign key for a RowClass creates a relationship between database tables. When loadObjectsFrom
is called for a table, it will automatically load all the children rows for the rows from the specified table. The child rows
will be put into a list member variable of the rowObject instance with the name childRows or if a containerMethod
is specified for the foreign key relationship, that method will be called on the parent row object for each row that is
being added to it as a child.

The autoLoad member of the foreign key definition is a flag that specifies whether child rows should be auto-loaded
for that relationship when a parent row is loaded.

3.4.5 Duplicate Row Objects
If a reflector tries to load an instance of a rowObject that is already loaded, it will return a reference to the existing
rowObject rather than creating a new instance. The reflector maintains a cache of weak references to all loaded row
objects by their unique keys for this purpose.

3.4.6 Updating Row Objects
RowObjects have a dirty member attribute that is set to 1 when any of the member attributes of the instance that
map to database columns are changed. This dirty flag can be used to tell when RowObjects need to be updated back
to the database. In addition, the setDirty method can be overridden to provide more complex automated handling
such as dirty lists (be sure to call the base class setDirty though!).

When it is determined that a RowObject instance is dirty and need to have its state updated into the database, pass
that object to the updateRow method of the Reflector. For example:

reflector.updateRow(room).addCallback(onUpdated)

For more complex behavior, the reflector can generate the SQL for the update but not perform the update. This can
be useful for batching up multiple updates into single requests. For example:

updateSQL = reflector.updateRowSQL(room)

3.4.7 Deleting Row Objects
To delete a row from a database pass the RowObject instance for that row to the Reflector deleteRow method.
Deleting the python Rowobject instance does not automatically delete the row from the database. For example:

reflector.deleteRow(room)

CHAPTER 3. HIGH-LEVEL TWISTED 51

3.5 Using usage.Options

3.5.1 Introduction
There is frequently a need for programs to parse a UNIX-like command line program: options preceded by - or --,
sometimes followed by a parameter, followed by a list of arguments. The twisted.python.usage provides a
class, Options, to facilitate such parsing.

While Python has the getopt module for doing this, it provides a very low level of abstraction for options.
Twisted has a higher level of abstraction, in the class twisted.python.usage.Options. It uses Python’s
reflection facilities to provide an easy to use yet flexible interface to the command line. While most command line
processors either force the application writer to write her own loops, or have arbitrary limitations on the command line
(the most common one being not being able to have more then one instance of a specific option, thus rendering the
idiom program -v -v -v impossible), Twisted allows the programmer to decide how much control she wants.

The Options class is used by subclassing. Since a lot of time it will be used in the twisted.tap package,
where the local conventions require the specific options parsing class to also be called Options, it is usually imported
with

from twisted.python import usage

3.5.2 Boolean Options
For simple boolean options, define the attribute optFlags like this:

class Options(usage.Options):

optFlags = [["fast", "f"], ["safe", "s"]]

optFlags should be a list of 2-lists. The first element is the long name, and will be used on the command line
as --fast. The second one is the short name, and will be used on the command line as -f. The long name also
determines the name of the key that will be set on the Options instance. Its value will be 1 if the option was seen, 0
otherwise. Here is an example for usage:

class Options(usage.Options):

optFlags = [["fast", "f"], ["good", "g"], ["cheap", "c"]]

command_line = ["-g", "--fast"]

options = Options()
try:

options.parseOptions(command_line)
except usage.UsageError, errortext:

print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if options[’fast’]:
print "fast",

if options[’good’]:

CHAPTER 3. HIGH-LEVEL TWISTED 52

print "good",
if options[’cheap’]:

print "cheap",
print

The above will print fast good.
Note here that Options fully supports the mapping interface. You can access it mostly just like you can access any

other dict. Options are stored as mapping items in the Options instance: parameters as ’paramname’: ’value’ and flags
as ’flagname’: 1 or 0.

Inheritance, Or: How I Learned to Stop Worrying and Love the Superclass

Sometimes there is a need for several option processors with a unifying core. Perhaps you want all your commands to
understand -q/--quiet means to be quiet, or something similar. On the face of it, this looks impossible: in Python,
the subclass’s optFlags would shadow the superclass’s. However, usage.Options uses special reflection code
to get all of the optFlags defined in the hierarchy. So the following:

class BaseOptions(usage.Options):

optFlags = [["quiet", "q"]]

class SpecificOptions(BaseOptions):

optFlags = [["fast", "f"], ["good", "g"], ["cheap", "c"]]

Is the same as:

class SpecificOptions(BaseOptions):

optFlags = [["quiet", "q"], ["fast", "f"], ["good", "g"], ["cheap", "c"]]

3.5.3 Parameters
Parameters are specified using the attribute optParameters. They must be given a default. If you want to make
sure you got the parameter from the command line, give a non-string default. Since the command line only has strings,
this is completely reliable.

Here is an example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [["fast", "f"], ["good", "g"], ["cheap", "c"]]
optParameters = [["user", "u", None]]

try:
config.parseOptions() # When given no argument, parses sys.argv[1:]

except usage.UsageError, errortext:

CHAPTER 3. HIGH-LEVEL TWISTED 53

print ’%s: %s’ % (sys.argv[0], errortext)
print ’%s: Try --help for usage details.’ % (sys.argv[0])
sys.exit(1)

if config[’user’] is not None:
print "Hello", config[’user’]

print "So, you want it:"

if config[’fast’]:
print "fast",

if config[’good’]:
print "good",

if config[’cheap’]:
print "cheap",

print

Like optFlags, optParameters works smoothly with inheritance.

3.5.4 Option Subcommands
It is useful, on occassion, to group a set of options together based on the logical “action” to which they belong. For
this, the usage.Options class allows you to define a set of “subcommands”, each of which can provide its own
usage.Options instance to handle its particular options.

Here is an example for an Options class that might parse options like those the cvs program takes

from twisted.python import usage

class ImportOptions(usage.Options):
optParameters = [[’module’, ’m’, None], [’vendor’, ’v’, None],

[’release’, ’r’, None]]

class CheckoutOptions(usage.Options):
optParameters = [[’module’, ’m’, None], [’tag’, ’r’, None]]

class Options(usage.Options):
subCommands = [[’import’, None, ImportOptions],

[’checkout’, None, CheckoutOptions]]

optParameters = [[’compression’, ’z’, 0], [’repository’, ’r’, None]]

The subCommands attribute of Options directs the parser to the two other Options subclasses when the
strings "import" or "checkout" are present on the command line. All options after the given command string
are passed to the specified Options subclass for further parsing. Only one subcommand may be specified at a time.
After parsing has completed, the Options instance has two new attributes - subCommand and subOptions -
which hold the command string and the Options instance used to parse the remaining options.

CHAPTER 3. HIGH-LEVEL TWISTED 54

3.5.5 Generic Code For Options
Sometimes, just setting an attribute on the basis of the options is not flexible enough. In those cases, Twisted does not
even attempt to provide abstractions such as “counts” or “lists”, but rathers lets you call your own method, which will
be called whenever the option is encountered.

Here is an example of counting verbosity

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’verbosity’] = 0 # default

def opt_verbose(self):
self[’verbosity’] = self[’verbosity’]+1

def opt_quiet(self):
self[’verbosity’] = self[’verbosity’]-1

opt_v = opt_verbose
opt_q = opt_quiet

Command lines that look like command -v -v -v -v will increase verbosity to 4, while command -q -q
-q will decrease verbosity to -3.

The usage.Options class knows that these are parameter-less options, since the methods do not receive an
argument. Here is an example for a method with a parameter:

from twisted.python import usage

class Options(usage.Options):

def __init__(self):
usage.Options.__init__(self)
self[’symbols’] = []

def opt_define(self, symbol):
self[’symbols’].append(symbol)

opt_D = opt_define

This example is useful for the common idiom of having command -DFOO -DBAR to define symbols.

3.5.6 Parsing Arguments
usage.Options does not stop helping when the last parameter is gone. All the other arguments are sent into a
function which should deal with them. Here is an example for a cmp like command.

CHAPTER 3. HIGH-LEVEL TWISTED 55

from twisted.python import usage

class Options(usage.Options):

optParameters = [["max_differences", "d", 1]]

def parseArgs(self, origin, changed):
self[’origin’] = origin
self[’changed’] = changed

The command should look like command origin changed.
If you want to have a variable number of left-over arguments, just use def parseArgs(self, *args):.

This is useful for commands like the UNIX cat(1).

3.5.7 Post Processing
Sometimes, you want to perform post processing of options to patch up inconsistencies, and the like. Here is an
example:

from twisted.python import usage

class Options(usage.Options):

optFlags = [["fast", "f"], ["good", "g"], ["cheap", "c"]]

def postOptions(self):
if self[’fast’] and self[’good’] and self[’cheap’]:

raise usage.UsageError, "can’t have it all, brother"

3.6 DirDBM: Directory-based Storage

3.6.1 dirdbm.DirDBM
twisted.persisted.dirdbm.DirDBM is a DBM-like storage system. That is, it stores mappings between keys
and values, like a Python dictionary, except that it stores the values in files in a directory - each entry is a different file.
The keys must always be strings, as are the values. Other than that, DirDBM objects act just like Python dictionaries.

DirDBM is useful for cases when you want to store small amounts of data in an organized fashion, without having
to deal with the complexity of a RDBMS or other sophisticated database. It is simple, easy to use, cross-platform, and
doesn’t require any external C libraries, unlike Python’s built-in DBM modules.

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.DirDBM("/tmp/dir")
>>> d["librarian"] = "ook"
>>> d["librarian"]
’ook’
>>> d.keys()

CHAPTER 3. HIGH-LEVEL TWISTED 56

[’librarian’]
>>> del d["librarian"]
>>> d.items()
[]

3.6.2 dirdbm.Shelf
Sometimes it is neccessary to persist more complicated objects than strings. With some care, dirdbm.Shelf can
transparently persist them. Shelf works exactly like DirDBM, except that the values (but not the keys) can be
arbitrary picklable objects. However, notice that mutating an object after it has been stored in the Shelf has no effect
on the Shelf. When mutating objects, it is neccessary to explictly store them back in the Shelf afterwards:

>>> from twisted.persisted import dirdbm
>>> d = dirdbm.Shelf("/tmp/dir2")
>>> d["key"] = [1, 2]
>>> d["key"]
[1, 2]
>>> l = d["key"]
>>> l.append(3)
>>> d["key"]
[1, 2]
>>> d["key"] = l
>>> d["key"]
[1, 2, 3]

Chapter 4

Low-Level Twisted

4.1 Reactor Basics
The reactor is the core of the event loop within Twisted and provides a basic interface to a number of services, including
network communications, threading, and event dispatching.

There are multiple implementations of the reactor, each modified to provide better support for specialized features
over the default implementation. More information about these and how to use a particular implementation is available
via Choosing a Reactor (page 84).

You can get to the reactor object using the following code:

from twisted.internet import reactor

The reactor usually implements a set of interfaces, but depending on the chosen reactor and the platform, some of
the interfaces may not be implemented:

• IReactorCore: Core (required) functionality.

• IReactorFDSet: Use FileDescriptor objects.

• IReactorProcess: Process management. Read the Using Processes (page 66) document for more informa-
tion.

• IReactorSSL: SSL networking support.

• IReactorTCP: TCP networking support. More information can be found in the Writing Servers (page 58)
and Writing Clients (page 62) documents.

• IReactorThreads: Threading use and management. More information can be found within Threading In
Twisted (page 82).

• IReactorTime: Scheduling interface. More information can be found within Scheduling Tasks (page 81).

• IReactorUDP: UDP networking support. More information can be found within UDP Networking (page 65).

• IReactorUNIX: UNIX socket support.

57

CHAPTER 4. LOW-LEVEL TWISTED 58

4.2 Writing Servers

4.2.1 Overview
Twisted is a framework designed to be very flexible and let you write powerful servers. The cost of this flexibility is a
few layers in the way to writing your server.

This document describes the Protocol layer, where you implement protocol parsing and handling. If you are
implementing an application then you should read this document second, after first reading the top level overview
of how to begin writing your Twisted application, in Writing Plug-Ins for Twisted (page 40). This document is only
relevant to TCP, SSL and Unix socket servers, there is a separate document (page 65) for UDP.

Your protocol handling class will usually subclass twisted.internet.protocol.Protocol. Most pro-
tocol handlers inherit either from this class or from one of its convenience children. An instance of the protocol class
might be instantiated per-connection, on demand, and might go away when the connection is finished. This means that
persistent configuration is not saved in the Protocol.

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.
protocol.Factory. The default factory class just instantiates each Protocol, and then sets on it an attribute
called factory which points to itself. This lets every Protocol access, and possibly modify, the persistent con-
figuration.

It is usually useful to be able to offer the same service on multiple ports or network addresses. This is why the
Factory does not listen to connections, and in fact does not know anything about the network. See twisted.
internet.interfaces.IReactorTCP.listenTCP, and the other IReactor*.listen* APIs for more
information.

This document will explain each step of the way.

4.2.2 Protocols
As mentioned above, this, along with auxiliary classes and functions, is where most of the code is. A Twisted protocol
handles data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather
responds to events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def dataReceived(self, data):
self.transport.write(data)

This is one of the simplest protocols. It simply writes back whatever is written to it, and does not respond to all
events. Here is an example of a Protocol responding to another event:

from twisted.internet.protocol import Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

CHAPTER 4. LOW-LEVEL TWISTED 59

This protocol responds to the initial connection with a well known quote, and then terminates the connection.
The connectionMade event is usually where set up of the connection object happens, as well as any initial greetings

(as in the QOTD protocol above, which is actually based on RFC 865). The connectionLost event is where tearing
down of any connection-specific objects is done. Here is an example:

from twisted.internet.protocol import Protocol

class Echo(Protocol):

def connectionMade(self):
self.factory.numProtocols = self.factory.numProtocols+1
if self.factory.numProtocols > 100:

self.transport.write("Too many connections, try later")
self.transport.loseConnection()

def connectionLost(self, reason):
self.factory.numProtocols = self.factory.numProtocols-1

def dataReceived(self, data):
self.transport.write(data)

Here connectionMade and connectionLost cooperate to keep a count of the active protocols in the factory.
connectionMade immediately closes the connection if there are too many active protocols.

Using the Protocol

In this section, I will explain how to test your protocol easily. (In order to see how you should write a production-grade
Twisted server, though, you should read the Writing Plug-Ins for Twisted (page 40) HOWTO as well).

Here is code that will run the QOTD server discussed earlier

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write("An apple a day keeps the doctor away\r\n")
self.transport.loseConnection()

Next lines are magic:
factory = Factory()
factory.protocol = QOTD

8007 is the port you want to run under. Choose something >1024
reactor.listenTCP(8007, factory)
reactor.run()

Don’t worry about the last 6 magic lines – you will understand what they do later in the document.

CHAPTER 4. LOW-LEVEL TWISTED 60

Helper Protocols

Many protocols build upon similar lower-level abstraction. The most popular in internet protocols is being line-based.
Lines are usually terminated with a CR-LF combinations.

However, quite a few protocols are mixed - they have line-based sections and then raw data sections. Examples
include HTTP/1.1 and the Freenet protocol.

For those cases, there is the LineReceiver protocol. This protocol dispatches to two different event handlers
- lineReceived and rawDataReceived. By default, only lineReceived will be called, once for each line.
However, if setRawMode is called, the protocol will call rawDataReceived until setLineMode is called again.

Here is an example for a simple use of the line receiver:

from twisted.protocols.basic import LineReceiver

class Answer(LineReceiver):

answers = {’How are you?’: ’Fine’, None : "I don’t know what you mean"}

def lineReceived(self, line):
if self.answers.has_key(line):

self.sendLine(self.answers[line])
else:

self.sendLine(self.answers[None])

Note that the delimiter is not part of the line.
Several other, less popular, helpers exist, such as a netstring based protocol and a prefixed-message-length protocol.

State Machines

Many Twisted protocol handlers need to write a state machine to record the state they are at. Here are some pieces of
advice which help to write state machines:

• Don’t write big state machines. Prefer to write a state machine which deals with one level of abstraction at a
time.

• Use Python’s dynamicity to create open ended state machines. See, for example, the code for the SMTP client.

• Don’t mix application-specific code with Protocol handling code. When the protocol handler has to make an
application-specific call, keep it as a method call.

4.2.3 Factories
As mentioned before, usually the class twisted.internet.protocol.Factoryworks, and there is no need
to subclass it. However, sometimes there can be factory-specific configuration of the protocols, or other considerations.
In those cases, there is a need to subclass Factory.

For a factory which simply instantiates instances of a specific protocol class, simply instantiate Factory, and
sets its protocol attribute:

CHAPTER 4. LOW-LEVEL TWISTED 61

from twisted.internet.protocol import Factory
from twisted.protocols.wire import Echo

myFactory = Factory()
myFactory.protocol = Echo

If there is a need to easily construct factories for a specific configuration, a factory function is often useful:

from twisted.internet.protocol import Factory, Protocol

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

def makeQOTDFactory(quote=None):
factory = Factory()
factory.protocol = QOTD
factory.quote = quote or ’An apple a day keeps the doctor away’
return factory

A Factory has two methods to perform application-specific building up and tearing down (since a Factory is
frequently persisted, it is often not appropriate to do them in init or del , and would frequently be too
early or too late).

Here is an example of a factory which allows its Protocols to write to a special log-file:

from twisted.internet.protocol import Factory
from twisted.protocols.basic import LineReceiver

class LoggingProtocol(LineReceiver):

def lineReceived(self, line):
self.factory.fp.write(line+’\n’)

class LogfileFactory(Factory):

protocol = LoggingProtocol

def __init__(self, fileName):
self.file = fileName

def startFactory(self):
self.fp = open(file, ’a’)

CHAPTER 4. LOW-LEVEL TWISTED 62

def stopFactory(self):
self.fp.close()

Putting it All Together

So, you know what factories are, and want to run the QOTD with configurable quote server, do you? No problems,
here is an example.

from twisted.internet.protocol import Factory, Protocol
from twisted.internet import reactor

class QOTD(Protocol):

def connectionMade(self):
self.transport.write(self.factory.quote+’\r\n’)
self.transport.loseConnection()

class QOTDFactory(Factory):

protocol = QOTD

def __init__(self, quote=None):
self.quote = quote or ’An apple a day keeps the doctor away’

reactor.listenTCP(8007, QOTDFactory("configurable quote"))
reactor.run()

The only lines you might not understand are the last two.
listenTCP is the method which connects a Factory to the network. It uses the reactor interface, which lets

many different loops handle the networking code, without modifying end-user code, like this. As mentioned above, if
you want to write your code to be a production-grade Twisted server, and not a mere 20-line hack, you will want to
use the Application object (page 35).

4.3 Writing Clients

4.3.1 Overview
Twisted is a framework designed to be very flexible, and let you write powerful clients. The cost of this flexibility is a
few layers in the way to writing your client. This document covers creating clients that can be used for TCP, SSL and
Unix sockets, UDP is covered in a different document (page 65).

At the base, the place where you actually implement the protocol parsing and handling, is the Protocol class.
This class will usually be decended from twisted.internet.protocol.Protocol. Most protocol handlers
inherit either from this class or from one of its convenience children. An instance of the protocol class will be
instantiated when you connect to the server, and will go away when the connection is finished. This means that
persistent configuration is not saved in the Protocol.

CHAPTER 4. LOW-LEVEL TWISTED 63

The persistent configuration is kept in a Factory class, which usually inherits from twisted.internet.
protocol.ClientFactory. The default factory class just instantiate the Protocol, and then sets on it an attribute
called factory which points to itself. This let the Protocol access, and possibly modify, the persistent configuration.

4.3.2 Protocol
As mentioned above, this, and auxiliary classes and functions, is where most of the code is. A Twisted protocol handles
data in an asynchronous manner. What this means is that the protocol never waits for an event, but rather responds to
events as they arrive from the network.

Here is a simple example:

from twisted.internet.protocol import Protocol
from sys import stdout
class Echo(Protocol):

def dataReceived(self, data):
stdout.write(data)

This is one of the simplest protocols. It simply writes to standard output whatever it reads from the connection.
There are many events it does not respond to. Here is an example of a Protocol responding to another event.

from twisted.internet.protocol import Protocol
class WelcomeMessage(Protocol):

def connectionMade(self):
self.transport.write("Hello server, I am the client!\r\n")
self.transport.loseConnection()

This protocol connects to the server, sends it a welcome message, and then terminates the connection.
The connectionMade event is usually where set up of the Protocol object happens, as well as any initial greetings

(as in the WelcomeMessage protocol above). Any tearing down of Protocol-specific objects is done in connectionLost.

4.3.3 ClientFactory
With the new API, Protocols no longer connect directly using reactor.client*. Instead, we use reactor.connect* and
a ClientFactory. The ClientFactory is in charge of creating the Protocol, and also receives events relating to the
connection state. This allows it to do things like reconnect on the event of a connection error. Here is an example of a
simple ClientFactory that uses the Echo protocol (above) and also prints what state the connection is in.

from twisted.internet.protocol import Protocol, ClientFactory
from sys import stdout
class Echo(Protocol):

def dataReceived(self, data):
stdout.write(data)

class EchoClientFactory(ClientFactory):

CHAPTER 4. LOW-LEVEL TWISTED 64

def startedConnection(self, connector):
print ’Started to connect.’

def buildProtocol(self, addr):
print ’Connected.’
return Echo()

def clientConnectionLost(self, connector, reason):
print ’Lost connection. Reason:’, reason

def clientConnectionFailed(self, connector, reason):
print ’Connection failed. Reason:’, reason

To connect this EchoClientFactory to a server, you could use this code:

from twisted.internet import reactor
reactor.connectTCP(host, port, EchoClientFactory())
reactor.run()

4.3.4 A Higher-Level Example: ircLogBot
Overview of ircLogBot

The clients so far have been fairly simple. A more complicated example comes with Twisted in the doc/examples
directory. ircLogBot.py connects to an IRC server, joins a channel, and logs all traffic on it to a file. It demonstrates
some of the connection-level logic of reconnecting on a lost connection, as well as storing persistent data in the Factory.

Reconnection

Many times, the connection of a client will be lost unintentionally due to network errors. In the case of the ircLogBot,
leaving the bot disconnected will result in the loss of the log data until the administrator reconnects the bot. However,
with the new API this can be automated. The relevant part of ircLogBot.py follows:

from twisted.internet import protocol
class LogBotFactory(protocol.ClientFactory):

def clientConnectionLost(self, connector, reason):
connector.connect()

That last line is the most important. The connector passed as the first argument is the interface between a connec-
tion and a protocol. When the connection fails and the factory receives the clientConnectionLost event, the factory
can call connector.connect() to start the connection over again from scratch.

Persistent Data in the Factory

Since the Protocol instance is recreated each time the connection is made, the client needs some way to keep track of
data that should be persisted. In the case of ircLogBot.py: (LogBot.log() just logs the data to the file object stored
in LogBot.file)

CHAPTER 4. LOW-LEVEL TWISTED 65

from twisted.internet import protocol
from twisted.protocols import irc
class LogBot(irc.IRCClient):

def connectionMade(self):
irc.IRCClient.connectionMade(self)
self.file = open(self.factory.filename, "a")
self.log("[connected at %s]" %

time.asctime(time.localtime(time.time())))

def signedOn(self):
self.join(self.factory.channel)

class LogBotFactory(protocol.ClientFactory):

def __init__(self, channel, filename):
self.channel = channel
self.filename = filename

When the protocol is created, it gets a reference to the factory as self.factory. It can then access attributes of the
factory in its logic. In the case of LogBot, it opens the file and connects to the channel stored in the factory.

4.4 UDP Networking

4.4.1 Overview
Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network,
and send datagrams to any host on the network. In addition, datagrams may arrive in any order, never arrive at all, or
be duplicated in transit.

Since there are no multiple connections, we only use a single object, a protocol, for each UDP socket. We then use
the reactor to connect this protocol to a UDP transport, using the twisted.internet.interfaces.IReactor
UDP reactor API.

4.4.2 DatagramProtocol
At the base, the place where you actually implement the protocol parsing and handling, is the DatagramProtocol
class. This class will usually be decended from twisted.internet.protocol.DatagramProtocol. Most
protocol handlers inherit either from this class or from one of its convenience children. The DatagramProtocol class
receives datagrams, and can send them out over the network. Received datagrams include the address they were sent
from, and when sending datagrams the address to send to must be specified.

Here is a simple example:

from twisted.internet.protocol import DatagramProtocol
from twisted.internet import reactor

class Echo(DatagramProtocol):

CHAPTER 4. LOW-LEVEL TWISTED 66

def datagramReceived(self, data, (host, port)):
print "received %r from %s:%d" % (data, host, port)
self.transport.write(data, (host, port))

reactor.listenUDP(9999, Echo())
reactor.run()

As you can see, the protocol is registed with the reactor. This means it may be persisted if it’s added to an
application, and thus it has twisted.internet.protocol.DatagramProtocol.startProtocol and
twisted.internet.protocol.DatagramProtocol.stopProtocol methods that will get called when
the protocol is connected and disconnected from a UDP socket.

The protocol’s transport attribute will implement the twisted.internet.interfaces.
IUDPTransport interface.

4.4.3 Connected UDP
A connected UDP socket is slighly different from a standard one - it can only send and receive datagramss to/from a
single address, but this does not in any way imply a connection. Datagrams may still arrive in any order, and the port
on the other side may have no one listening. The benefit of the connected UDP socket is that it is faster.

Unlike a regular UDP protocol, we do not need to specify where to send datagrams to, and are not told where they
came from since they can only come from address the socket is ’connected’ to.

The protocol’s transport attribute will implement the twisted.internet.interfaces.
IUDPConnectedTransport interface.

from twisted.internet.protocol import ConnectedDatagramProtocol
from twisted.internet import reactor

class Echo(ConnectedDatagramProtocol):

def datagramReceived(self, data):
self.transport.write(data)

reactor.connectUDP("www.example.com", 9999, Echo())
reactor.run()

4.5 Using Processes

4.5.1 Overview
Along with connection to servers across the internet, Twisted also connects to local processes with much the same
API. The API is described in more detail in the documentation of:

• twisted.internet.interfaces.IReactorProcess

• twisted.internet.interfaces.IProcessTransport

• twisted.internet.protocol.ProcessProtocol

CHAPTER 4. LOW-LEVEL TWISTED 67

4.5.2 Running Another Process
Processes are run through the reactor, using reactor.spawnProcess(). Pipes are created to the child process,
and added to the reactor core so that the application will not block while sending data into or pulling data out of the new
process. reactor.spawnProcess() requires two arguments, processProtocol and executable, and optionally
takes six more: arguments, environment, path, userID, groupID, and usePTY.

from twisted.internet import reactor

mypp = MyProcessProtocol()
reactor.spawnProcess(processProtocol, executable, args=[program, arg1, arg2],

env={’HOME’: os.environ[’HOME’]}, path,
uid, gid, usePTY)

• processProtocol should be an instance of a subclass of twisted.internet.protocol.Process
Protocol. The interface is described below.

• executable is the full path of the program to run. It will be connected to processProtocol.

• args is a list of command line arguments to be passed to the process. args[0] should be the name of the
process.

• env is a dictionary containing the environment to pass through to the process.

• path is the directory to run the process in. The child will switch to the given directory just before starting the
new program. The default is to stay in the current directory.

• uid and gid are the user ID and group ID to run the subprocess as. Of course, changing identities will be more
likely to succeed if you start as root.

• usePTY specifies whether the child process should be run with a pty, or if it should just get a pair of pipes.
Interactive programs (where you don’t know when it may read or write) need to be run with ptys.

args and env have empty default values, but many programs depend upon them to be set correctly. At the very
least, args[0] should probably be the same as executable. If you just provide os.environ for env, the child
program will inherit the environment from the current process, which is usually the civilized thing to do (unless you
want to explicitly clean the environment as a security precaution).

reactor.spawnProcess() returns an instance that implements the twisted.internet.
interfaces.IProcessTransport.

4.5.3 Writing a ProcessProtocol
The ProcessProtocol you pass to spawnProcess is your interaction with the process. It has a very similar signature to
a regular Protocol, but it has several extra methods to deal with events specific to a process. In our example, we will
interface with ’wc’ to create a word count of user-given text. First, we’ll start by importing the required modules, and
writing the initialization for our ProcessProtocol.

from twisted.internet import protocol
class WCProcessProtocol(protocol.ProcessProtocol):

CHAPTER 4. LOW-LEVEL TWISTED 68

def __init__(self, text):
self.text = text

When the ProcessProtocol is connected to the protocol, it has the connectionMade method called. In our protocol,
we will write our text to the standard input of our process and then close standard input, to the let the process know
we are done writing to it.

def connectionMade(self):
self.transport.write(self.text)
self.transport.closeStdin()

At this point, the process has receieved the data, and it’s time for us to read the results. Instead of being receieved
in dataReceived, data from standard output is receieve in outReceived. This is to distinguish it from data on standard
error.

def outReceived(self, data):
fieldLength = len(data) / 3
lines = int(data[:fieldLength])
words = int(data[fieldLength:fieldLength*2])
chars = int(data[fieldLength*2:])
self.transport.loseConnection()
self.receiveCounts(lines, words, chars)

Now, the process has parsed the output, and ended the connection to the process. Then it sends the results on to
the final method, receiveCounts. This is for users of the class to override, so as to do other things with the data. For
our demonstration, we will just print the results.

def receiveCounts(self, lines, words, chars):
print ’Received counts from wc.’
print ’Lines:’, lines
print ’Words:’, words
print ’Characters:’, chars

We’re done! To use our WCProcessProtocol, we create an instance, and pass it to spawnProcess.

from twisted.internet import reactor
wcProcess = WCProcessProtocol("accessing protocols through Twisted is fun!\n")
reactor.spawnProcess(wcProcess, ’wc’, [’wc’])
reactor.run()

4.5.4 Things that can happen to your ProcessProtocol
These are the methods that you can usefully override in your subclass of ProcessProtocol:

• .connectionMade: This is called when the program is started, and makes a good place to write data into the
stdin pipe (using self.transport.write()).

CHAPTER 4. LOW-LEVEL TWISTED 69

• .outReceived(data): This is called with data that was received from the process’ stdout pipe. Pipes tend
to provide data in larger chunks than sockets (one kilobyte is a common buffer size), so you may not experience
the “random dribs and drabs” behavior typical of network sockets, but regardless you should be prepared to deal
if you don’t get all your data in a single call. To do it properly, outReceived ought to simply accumulate the
data and put off doing anything with it until the process has finished.

• .errReceived(data): This is called with data from the process’ stderr pipe. It behaves just like out
Received.

• .inConnectionLost: This is called when the reactor notices that the process’ stdin pipe has closed. Pro-
grams don’t typically close their own stdin, so this will probably get called when your ProcessProtocol has shut
down the write side with self.transport.loseConnection().

• .outConnectionLost: This is called when the program closes its stdout pipe. This usually happens when
the program terminates.

• .errConnectionLost: Same as outConnectionLost, but for stderr instead of stdout.

• .processEnded(status): This is called when the child process has been reaped, and receives information
about the process’ exit status. The status is passed in the form of a Failure instance, created with a .value
that either holds a ProcessDone object if the process terminated normally (it died of natural causes instead
of receiving a signal, and if the exit code was 0), or a ProcessTerminated object (with an .exitCode
attribute) if something went wrong. This scheme may seem a bit weird, but I trust that it proves useful when deal-
ing with exceptions that occur in asynchronous code. XXX: check twisted/internet/process.py:v1.30:line357, I
think death-by-signal wouldn’t be reported properly.

This will always be called afterinConnectionLost, outConnectionLost, and errConnection
Lost are called.

The base-class definitions of these functions are all no-ops. This will result in all stdout and stderr being thrown
away. Note that it is important for data you don’t care about to be thrown away: if the pipe were not read, the child
process would eventually block as it tried to write to a full pipe.

4.5.5 Things you can do from your ProcessProtocol
The following are the basic ways to control the child process:

• self.transport.write(data): Stuff some data in the stdin pipe. Note that this write method will
queue any data that can’t be written immediately. Writing will resume in the future when the pipe becomes
writable again.

• self.transport.closeStdin: Close the stdin pipe. Programs which act as filters (reading from stdin,
modifying the data, writing to stdout) usually take this as a sign that they should finish their job and terminate.
For these programs, it is important to close stdin when you’re done with it, otherwise the child process will
never quit.

• self.transport.closeStdout: Not usually called, since you’re putting the process into a state where
any attempt to write to stdout will cause a SIGPIPE error. This isn’t a nice thing to do to the poor process.

• self.transport.closeStderr: Not usually called, same reason as closeStdout.

CHAPTER 4. LOW-LEVEL TWISTED 70

• self.transport.loseConnection: Close all three pipes.

• os.kill(self.transport.pid, signal.SIGKILL): Kill the child process. This will eventually
result in processEnded being called.

4.5.6 Verbose Example
Here is an example that is rather verbose about exactly when all the methods are called. It writes a number of lines
into the wc program and then parses the output.

#! /usr/bin/python

from twisted.internet import protocol
from twisted.internet import reactor
import re

class MyPP(protocol.ProcessProtocol):
def __init__(self, verses):

self.verses = verses
self.data = ""

def connectionMade(self):
print "connectionMade!"
for i in range(self.verses):

self.transport.write("Aleph-null bottles of beer on the wall,\n" +
"Aleph-null bottles of beer,\n" +
"Take on down and pass it around,\n" +
"Aleph-null bottles of beer on the wall.\n")

self.transport.closeStdin() # tell them we’re done
def outReceived(self, data):

print "outReceived! with %d bytes!" % len(data)
self.data = self.data + data

def errReceived(self, data):
print "errReceived! with %d bytes!" % len(data)

def inConnectionLost(self):
print "inConnectionLost! stdin is closed! (we probably did it)"

def outConnectionLost(self):
print "outConnectionLost! The child closed their stdout!"
now is the time to examine what they wrote
#print "I saw them write:", self.data
(dummy, lines, words, chars, file) = re.split(r’\s+’, self.data)
print "I saw %s lines" % lines

def errConnectionLost(self):
print "errConnectionLost! The child closed their stderr."

def processEnded(self, status_object):
print "processEnded, status %d" % status_object.value.exitCode
print "quitting"
reactor.stop()

CHAPTER 4. LOW-LEVEL TWISTED 71

pp = MyPP(10)
reactor.spawnProcess(pp, "wc", ["wc"], {})
reactor.run()

Source listing — process.py

The exact output of this program depends upon the relative timing of some un-synchronized events. In particular,
the program may observe the child process close its stderr pipe before or after it reads data from the stdout pipe. One
possible transcript would look like this:

% ./process.py
connectionMade!
inConnectionLost! stdin is closed! (we probably did it)
errConnectionLost! The child closed their stderr.
outReceived! with 24 bytes!
outConnectionLost! The child closed their stdout!
I saw 40 lines
processEnded, status 0
quitting
Main loop terminated.
%

4.5.7 Doing it the Easy Way
Frequently, one just need a simple way to get all the output from a program. For those cases, the twisted.
internet.utils.getProcessOutput function can be used. Here is a simple example:

from twisted.internet import protocol, utils, reactor
from twisted.python import failure
from cStringIO import StringIO

class FortuneQuoter(protocol.Protocol):

fortune = ’/usr/games/fortune’

def connectionMade(self):
output = utils.getProcessOutput(self.fortune)
output.addCallbacks(self.writeResponse, self.noResponse)

def writeResponse(self, resp):
self.transport.write(resp)
self.transport.loseConnection()

def noResponse(self, err):
self.transport.loseConnection()

CHAPTER 4. LOW-LEVEL TWISTED 72

if __name__ == ’__main__’:
f = protocol.Factory()
f.protocol = FortuneQuoter
reactor.listenTCP(10999, f)
reactor.run()

Source listing — quotes.py

If you need to get just the final exit code, the twisted.internet.utils.getProcessValue function is
useful. Here is an example:

from twisted.internet import utils, reactor

def printTrueValue(val):
print val
output = utils.getProcessValue(’false’)
output.addCallback(printFalseValue)

def printFalseValue(val):
print val
reactor.stop()

output = utils.getProcessValue(’true’)
output.addCallback(printTrueValue)
reactor.run()

Source listing — trueandfalse.py

4.6 Deferring Execution

4.6.1 The Problem
Dealing with Blocking Code

When coding I/O based programs - networking code, databases, file access - there are many APIs that are blocking,
and many methods where the common idiom is to block until a result is gotten.

class Getter:

def getData(self, x):
self.blockUntilResult(x)
return result

g = Getter()
print g.getData(3)

CHAPTER 4. LOW-LEVEL TWISTED 73

Don’t Call Us, We’ll Call You

Twisted can not support blocking calls in most of its code, since it is single threaded, and event based. The solution
for this issue is to refactor the code, so that instead of blocking until data is available, we return immediately, and use
a callback to notify the requester once the data eventually arrives. Looking at how this is usually implemented will
help us understand the necessity for Deferreds.

class Getter:

def getData(self, x, callback):
self.callback = callback
this call does not block, it ensure self.gotResult is called
when we have the result
self.onResult(x, self.gotResult)

def gotResult(self, result):
self.callback(result)

def gotData(d):
print d

g = Getter()
g.getData(3, gotData)

There are several things missing in this simple example. There is no way to know if the data never comes back;
no mechanism for handling errors. There is no way to distinguish between different calls to gotData from different
sessions. Deferred solves these problems, by creating a single, unified way to defer execution of code that depends
on blocking calls.

4.6.2 Deferreds
A twisted.internet.defer.Deferred is a promise that a function will at some point have a result. We can
attach callback functions to a Deferred, and once it gets a result these callbacks will be called. In addition Deferreds
allow the developer to register a callback for an error, with the default behavior of logging the error. This is an
asynchronous equivalent of the common idiom of blocking until a result is returned or an exception it raised.

As we said, multiple callbacks can be added to a Deferred. The first callback in the Deferred’s callback chain will
be called with the result, the second with the result of the first callback, and so on. Why do we need this? Well, consider
a Deferred returned by twisted.enterprise.adbapi - the result of a SQL query. A web widget might add a callback that
converts this result into HTML, and pass the Deferred onwards, where the callback will be used by twisted to return
the result to the HTTP client.

import sys
from twisted.internet import defer

class Getter:

def getResult(self, x):

CHAPTER 4. LOW-LEVEL TWISTED 74

self.d = defer.Deferred()
self.doNonblockingStuff(x)
return self.d

def gotResult(self, result):
"""Called when we get some info from somewhere via the event loop.

E.g. this may be called because we got a chunk of data off a socket.
"""
if self.goodResult(result):

tell the Deferred that we have a result for it
self.d.callback(result)

else:
tell the Deferred that we have an error
self.d.errback("An error has occured.")

def printData(d): sys.stdout.write(d)
def printError(e): sys.stderr.write(e)

g = Getter()
d = g.getResult(3) # notice how this is similar to the blocking version
d.addCallback(printData) # printData will be called when a result is available
d.addErrback(printError) # printError will be called on an error

run main event loop here
from twisted.internet import reactor
reactor.run()

Visual Explanation

errbacks

callbacks

Attaches

Data Sink Requests Data From

Returns

Data Source

Deferred
object

1

2

3

1. Requesting method (data sink) requests data, gets Deferred object.

2. Requesting method attaches callbacks to Deferred object.

CHAPTER 4. LOW-LEVEL TWISTED 75

Data Source

Deferred
object

result or failure

C
a
l
l
b
a
c
k
s

E
r
r
b
a
c
k
s

result failure

1. When the result is ready, give it to the Deferred object. .callback(result) if the operation succeeded,
.errback(failure) if it failed. Note that failure is typically an instance of a twisted.python.
failure.Failure instance.

2. Deferred object triggers previously-added (call/err)back with the result or failure. Execution then follows
the following rules, going down the chain of callbacks to be processed.

• Result of the callback is always passed as the first argument to the next callback, creating a chain of
processors.

• If a callback raises an exception, switch to errback.

• An unhandled failure gets passed down the line of errbacks, this creating an asynchronous analog to a
series to a series of except: statements.

• If an errback doesn’t raise an exception or return a twisted.python.failure.Failure instance,
switch to callback.

More about callbacks

You add multiple callbacks to a Deferred:

g = Getter()
d = g.getResult(3)
d.addCallback(processResult)
d.addCallback(printResult)

CHAPTER 4. LOW-LEVEL TWISTED 76

Each callback feeds its return value into the next callback (callbacks will be called in the order you add them).
Thus in the previous example, processResult’s return value will be passed to printResult, instead of the
value initially passed into the callback. This gives you a flexible way to chain results together, possibly modifying
values along the way, (for example, you may wish to pre-processed database query results).

More about errbacks

Deferred’s error handling is modeled after Python’s exception handling. In the case that no errors occur, all the
callbacks run, one after the other, as described above.

If the errback is called instead of the callback (e.g. because a DB query raised an error), then a twisted.
python.failure.Failure is passed into the first errback (you can add multiple errbacks, just like with call-
backs). You can think of your errbacks as being like except blocks of ordinary Python code.

Unless you explicitly raise an error in except block, the Exception is caught and stops propagating, and
normal execution continues. The same thing happens with errbacks: unless you explicitly return a Failure or
(re-)raise an exception, the error stops propagating, and normal callbacks continue executing from that point (using
the value returned from the errback). If the errback does returns a Failure or raise an exception, then that is passed
to the next errback, and so on.

Note: If an errback doesn’t return anything, then it effectively returns None, meaning that callbacks will continue
to be executed after this errback. This may not be what you expect to happen, so be careful. Make sure your errbacks
return a Failure (probably the one that was passed to it), or a meaningful return value for the next callback.

Also, twisted.python.failure.Failure instances have a useful method called trap, allowing you to
effectively do the equivalent of:

try:
code that may throw an exception
cookSpamAndEggs()

except (SpamException, EggException):
Handle SpamExceptions and EggExceptions
...

You do this by:

def errorHandler(failure):
failure.trap(SpamException, EggException)
Handle SpamExceptions and EggExceptions

d.addCallback(cookSpamAndEggs)
d.addErrback(errorHandler)

If none of arguments passed to failure.trap match the error encapsulated in that Failure, then it re-raises
the error.

There’s another potential “gotcha” here. There’s a convenience method twisted.internet.defer.
Deferred.addCallbacks which is similar to, but not exactly the same as, addCallback followed by add
Errback. In particular, consider these two cases:

Case 1
d = getDeferredFromSomewhere()
d.addCallback(callback1)

CHAPTER 4. LOW-LEVEL TWISTED 77

d.addErrback(errback1)
d.addCallback(callback2)
d.addErrback(errback2)

Case 2
d = getDeferredFromSomewhere()
d.addCallbacks(callback1, errback1)
d.addCallbacks(callback2, errback2)

If an error occurs in callback1, then for Case 1 errback1 will be called with the failure. For Case 2,
errback2 will be called. Be careful with your callbacks and errbacks.

Unhandled Errors

If a Deferred is garbage-collected with an unhandled error (i.e. it would call the next errback if there was one), then
Twisted will write the error’s traceback to the log file. This means that you can typically get away with not adding
errbacks and still get errors logged. Be careful though; if you keep a reference to the Deferred around, preventing it
from being garbage-collected, then you may never see the error (and your callbacks will mysteriously seem to have
never been called). If unsure, you should explicitly add an errback after your callbacks, even if all you do is:

Make sure errors get logged
from twisted.python import log
d.addErrback(log.err)

4.6.3 Class Overview
This is the overview API reference for Deferred. It is not meant to be a substitute for the docstrings in the Deferred
class, but can provide guidelines for its use.

Basic Callback Functions

• addCallbacks(self, callback[, errback, callbackArgs, errbackArgs, errback
Keywords, asDefaults])

This is the method with which you will use to interact with Deferred. It adds a pair of callbacks “parallel” to
each other (see diagram above) in the list of callbacks made when the Deferred is called back to. The signa-
ture of a method added using addCallbacks should be myMethod(result, *methodArgs, **method
Keywords). If your method is passed in the callback slot, for example, all arguments in the tuple callback
Args will be passed as *methodArgs to your method.

There exist various convenience methods that are derivative of addCallbacks. I will not cover them in detail
here, but it is important to know about them in order to create concise code.

– addCallback(callback, *callbackArgs, **callbackKeywords)

Adds your callback at the next point in the processing chain, while adding an errback that will re-raise its
first argument, not affecting further processing in the error case.

– addErrback(errback, *errbackArgs, **errbackKeywords)

Adds your errback at the next point in the processing chain, while adding a callback that will return its first
argument, not affecting further processing in the success case.

CHAPTER 4. LOW-LEVEL TWISTED 78

– addBoth(callbackOrErrback, *callbackOrErrbackArgs, **callbackOrErrback
Keywords)

This method adds the same callback into both sides of the processing chain at both points. Keep in mind
that the type of the first argument is indeterminate if you use this method! Use it for finally: style
blocks.

• callback(result)

Run success callbacks with the given result. This can only be run once. Later calls to this or errback will
raise twisted.internet.defer.AlreadyCalledError. If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

• errback(failure)

Run error callbacks with the given failure. This can only be run once. Later calls to this or callback will
raise twisted.internet.defer.AlreadyCalledError. If further callbacks or errbacks are added
after this point, addCallbacks will run the callbacks immediately.

Chaining Deferreds

If you need one Deferred to wait on another, all you need to do is return a Deferred from a method added to addCall-
backs. Specifically, if you return Deferred B from a method added to Deferred A using A.addCallbacks, Deferred A’s
processing chain will stop until Deferred B’s .callback() method is called; at that point, the next callback in A will be
passed the result of the last callback in Deferred B’s processing chain at the time.

If this seems confusing, don’t worry about it right now – when you run into a situation where you need this
behavior, you will probably recognize it immediately and realize why this happens. If you want to chain deferreds
manually, there is also a convenience method to help you.

• chainDeferred(otherDeferred)

Add otherDeferred to the end of this Deferred’s processing chain. When self.callback is called, the result
of my processing chain up to this point will be passed to otherDeferred.callback. Further additions to
my callback chain do not affect otherDeferred

This is the same as self.addCallbacks(otherDeferred.callback, otherDeferred.
errback)

Automatic Error Conditions

• setTimeout(seconds[, timeoutFunc])

Set a timeout function to be triggered if this Deferred is not called within that time period. By default, this will
raise a TimeoutError after seconds.

A Brief Interlude: Technical Details

While deferreds greatly simplify the process of writing asynchronous code by providing a standard for registering
callbacks, there are some subtle and sometimes confusing rules that you need to follow if you are going to use them.
This mostly applies to people who are writing new systems that use Deferreds internally, and not writers of applications
that just add callbacks to Deferreds produced and processed by other systems. Nevertheless, it is good to know.

CHAPTER 4. LOW-LEVEL TWISTED 79

Deferreds are one-shot. A generalization of the Deferred API to generic event-sources is in progress – watch
this space for updates! – but Deferred itself is only for events that occur once. You can only call Deferred.
callback or Deferred.errback once. The processing chain continues each time you add new callbacks to an
already-called-back-to Deferred.

The important consequence of this is that sometimes, addCallbacks will call its argument synchronously, and
sometimes it will not. In situations where callbacks modify state, it is highly desirable for the chain of processing to
halt until all callbacks are added. (For the curious: the code for twisted.web.widgets has a textbook example
of this.) For this, it is possible to pause and unpause a Deferred’s processing chain while you are adding lots of
callbacks.

Be careful when you use these methods! If you pause a Deferred, it is your responsibility to make sure that you
unpause it; code that calls callback or errback should never call unpause, as this would negate its usefulness!

Advanced Processing Chain Control

• pause()

Cease calling any methods as they are added, and do not respond to callback, until self.unpause() is
called.

• unpause()

If callback has been called on this Deferred already, call all the callbacks that have been added to this
Deferred since pause was called.

Whether it was called or not, this will put this Deferred in a state where further calls to addCallbacks or
callback will work as normal.

4.6.4 DeferredList
Sometimes you want to be notified after several different events have all happened, rather than individually waiting
for each one. For example, you may want to wait for all the connections in a list to close. twisted.internet.
defer.DeferredList is the way to do this.

To create a DeferredList from multiple Deferreds, you simply pass a list of the Deferreds you want it to wait for:

Creates a DeferredList
dl = defer.DeferredList([deferred1, deferred2, deferred3])

You can also add the Deferreds later:

dl.addDeferred(deferred4)

You can now treat the DeferredList like an ordinary Deferred; you can call addCallbacks and so on. The
DeferredList will call its callback when all the deferreds have completed. The callback will be called with a list of the
results of the Deferreds it contains, like so:

def printResult(result):
print result

deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred3 = defer.Deferred()

CHAPTER 4. LOW-LEVEL TWISTED 80

dl = defer.DeferredList([deferred1, deferred2, deferred3])
dl.addCallback(printResult)
deferred1.callback(’one’)
deferred2.errback(’bang!’)
deferred3.callback(’three’)
At this point, dl will fire its callback, printing:
[(1, ’one’), (0, ’bang!’), (1, ’three’)]
(note that defer.SUCCESS == 1, and defer.FAILURE == 0)

A standard DeferredList will never call errback.

Note:
If you want to apply callbacks to the individual Deferreds that go into the DeferredList, you should

be careful about when those callbacks are added. The act of adding a Deferred to a DeferredList inserts
a callback into that Deferred (when that callback is run, it checks to see if the DeferredList has been
completed yet). The important thing to remember is that it is this callback which records the value that
goes into the result list handed to the DeferredList’s callback. TODO: add picture here: three columns of
callback chains, with a value being snarfed out of the middle of each and handed off to the DeferredList

Therefore, if you add a callback to the Deferred after adding the Deferred to the DeferredList, the
value returned by that callback will not be given to the DeferredList’s callback. To avoid confusion, we
recommend not adding callbacks to a Deferred once it has been used in a DeferredList.

def printResult(result):
print result

def addTen(result):
return result + " ten"

Deferred gets callback before DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
deferred1.addCallback(addTen)
dl = defer.DeferredList([deferred1, deferred2])
dl.addCallback(printResult)
deferred1.callback("one") # fires addTen, checks DeferredList, stores "one ten"
deferred2.callback("two")
At this point, dl will fire its callback, printing:
[(1, ’one ten’), (1, ’two’)]

Deferred gets callback after DeferredList is created
deferred1 = defer.Deferred()
deferred2 = defer.Deferred()
dl = defer.DeferredList([deferred1, deferred2])
deferred1.addCallback(addTen) # will run *after* DeferredList gets its value
dl.addCallback(printResult)
deferred1.callback("one") # checks DeferredList, stores "one", fires addTen
deferred2.callback("two")
At this point, dl will fire its callback, printing:

CHAPTER 4. LOW-LEVEL TWISTED 81

[(1, ’one), (1, ’two’)]

Other behaviours

DeferredList accepts two keywords arguments that modify its behaviour: fireOnOneCallback and fireOnOne
Errback. If fireOnOneCallback is set, the DeferredList will immediately call its callback as soon as any of its
Deferreds call their callback. Similarly, fireOnOneErrback will call errback as soon as any of the Deferreds call
their errback. Note that DeferredList is still one-shot, like ordinary Deferreds, so after a callback or errback has been
called the DeferredList will do nothing further (it will just silently ignore any other results from its Deferreds).

The fireOnOneErrback option is particularly useful when you want to wait for all the results if everything
succeeds, but also want to know immediately if something fails.

4.7 Scheduling tasks for the future
Let’s say we want to run a task X seconds in the future. The way to do that is defined in the reactor interfacetwisted.
internet.interfaces.IReactorTime:

from twisted.internet import reactor

def f(s):
print "this will run in 3.5 seconds: %s" % s

reactor.callLater(3.5, f, "hello, world")

If we want a task to run every X seconds repeatedly, we can just re-add it every time it’s run:

from twisted.internet import reactor

def runEverySecond():
print "a second has passed"
reactor.callLater(1, runEverySecond)

reactor.callLater(1, runEverySecond)

If we want to cancel a task that we’ve scheduled:

from twisted.internet import reactor

def f():
print "I’ll never run."

callID = reactor.callLater(5, f)
callID.cancel()

CHAPTER 4. LOW-LEVEL TWISTED 82

4.8 Using Threads in Twisted

4.8.1 Introduction
Before you start using threads, make sure you do at the start of your program:

from twisted.python import threadable
threadable.init()

This will make certain parts of Twisted thread-safe so you can use them safely. However, note that most parts of
Twisted are not thread-safe.

4.8.2 Running code in a thread-safe manner
Most code in Twisted is not thread-safe. For example, writing data to a transport from a protocol is not thread-safe.
Therefore, we want a way to schedule methods to be run in the main event loop. This can be done using the function
twisted.internet.interfaces.IReactorThreads.callFromThread:

from twisted.internet import reactor
from twisted.python import threadable
threadable.init(1)

def notThreadSafe(x):
"""do something that isn’t thread-safe"""
...

def threadSafeScheduler():
"""Run in thread-safe manner."""
reactor.callFromThread(notThreadSafe, 3) # will run ’notThreadSafe(3)’

in the event loop

4.8.3 Running code in threads
Sometimes we may want to run methods in threads - for example, in order to access blocking APIs. Twisted pro-
vides methods for doing so using the IReactorThreads API (twisted.internet.interfaces.IReactor
Threads). Additional utility functions are provided in twisted.internet.threads. Basically, these meth-
ods allow us to queue methods to be run by a thread pool.

For example, to run a method in a thread we can do:

from twisted.internet import reactor

def aSillyBlockingMethod(x):
import time
time.sleep(2)
print x

run method in thread
reactor.callInThread(aSillyBlockingMethod, "2 seconds have passed")

CHAPTER 4. LOW-LEVEL TWISTED 83

4.8.4 Utility Methods
The utility methods are not part of the twisted.internet.reactorAPIs, but are implemented in twisted.
internet.threads.

If we have multiple methods to run sequentially within a thread, we can do:

from twisted.internet import threads

def aSillyBlockingMethodOne(x):
import time
time.sleep(2)
print x

def aSillyBlockingMethodTwo(x):
print x

run both methods sequentially in a thread
commands = [(aSillyBlockingMethodOne, ["Calling First"], {})]
commands.append((aSillyBlockingMethodTwo, ["And the second"], {}))
threads.callMultipleInThread(commands)

For functions whose results we wish to get, we can have the result returned as a Deferred:

from twisted.internet import threads

def doLongCalculation():
.... do long calculation here ...
return 3

def printResult(x):
print x

run method in thread and get result as defer.Deferred
d = threads.deferToThread(doLongCalculation)
d.addCallback(printResult)

4.8.5 Managing the Thread Pool
The thread pool is implemented by twisted.python.threadpool.ThreadPool.

We may want to modify the size of the threadpool, increasing or decreasing the number of threads in use. We can
do this do this quite easily:

from twisted.internet import reactor

reactor.suggestThreadPoolSize(20)

The size of the thread pool defaults to a maximum of 10 threads. Be careful that you understand threads and their
resource usage before drastically altering the thread pool sizes.

CHAPTER 4. LOW-LEVEL TWISTED 84

4.9 Choosing a Reactor and GUI Toolkit Integration

4.9.1 Overview
Twisted provides a variety of implementations of the twisted.internet.reactor. The specialized implemen-
tations are suited for different purposes and are designed to integrate better with particular platforms.

The general purpose reactor implementations are:

• The select()-based reactor (page 84)

• The poll()-based reactor (page 85)

Platform-specific reactor implementations exist for:

• cReactor for Unix (page 85)

• KQueue for FreeBSD (page 85)

• Java (page 85)

• Win32 (page 86)

The remaining custom reactor implementations provide support for integrating with the native event loops of
various graphical toolkits. This lets your Twisted application use all of the usual Twisted APIs while still being a
graphical application.

Twisted currently integrates with the following graphical toolkits:

• GTK+ (page 86)

• Qt (page 86)

• Tkinter (page 86)

• WxPython (page 87)

• Win32 (page 86)

When using applications that runnable using twistd, e.g. TAPs or plugins, there is no need to choose a reactor
explicitly, since this can be chosen using twistd’s -r option.

In all cases, the event loop is started by calling reactor.run().

4.9.2 Reactor Functionality

4.9.3 General Purpose Reactors
Select()-based Reactor

The SelectReactor is the default reactor.

from twisted.internet import reactor

The SelectReactor may be explicitly installed by:

from twisted.internet import default
default.install()

CHAPTER 4. LOW-LEVEL TWISTED 85

TCP SSL UDP Threading Processes Scheduling Platforms
select() Y Y Y Y Y (Unix only) Y Unix, Win32
poll() Y Y Y Y Y Y Unix
Win32 Y Y Y Y Y Y Win32
Java Y N N Y N Y Java 1.1+
GTK+ Y Y Y Y Y (Unix only) Y Unix, Win32
Qt Y Y Y Y Y (Unix only) Y Unix, Win32
kqueue Y Y Y Y Y Y FreeBSD
C Y N N Y Y Y Unix

Table 4.1: Summary of reactor features

Poll()-based Reactor

The PollReactor will work on any platform that provides poll(). With larger numbers of connected sockets, it may
provide for better performance.

from twisted.internet import pollreactor
pollreactor.install()

4.9.4 Platform-Specific Reactors
cReactor for Unix

The cReactor is a high-performance C implementation of the Reactor interfaces. It is currently experimental and under
active development. Be sure to see the installation notes (page 19) prior to using the cReactor.

from twisted.internet import cReactor
cReactor.install()

KQueue

The KQueue Reactor allows Twisted to use FreeBSD’s kqueue mechanism for event scheduling. See instructions in
the twisted.internet.kqreactor’s docstring for installation notes.

from twisted.internet import kqreactor
kqreactor.install()

Java

The Java Reactor allows Twisted to run under Jython1. It does not currently support AWT or Swing integration.

from twisted.internet import javareactor
javareactor.install()

1http://www.jython.org/

CHAPTER 4. LOW-LEVEL TWISTED 86

Win32

The Win32 reactor is not yet complete and has various limitations and issues that need to be addressed. The reactor
supports GUI integration with the win32gui module, so it can be used for native Win32 GUI applications.

from twisted.internet import win32eventreactor
win32eventreactor.install()

4.9.5 GUI Integration Reactors
GTK+

Twisted integrates with PyGTK2. Sample applications using GTK+ and Twisted are available in the Twisted CVS.

from twisted.internet import gtkreactor
gtkreactor.install()

Qt

An example Twisted application that uses Qt can be found in doc/examples/qtdemo.py.
When installing the reactor, pass a QApplication instance, and if you don’t a new one will be created for you.

from qt import QApplication
app = QApplication([])

from twisted.internet import qtreactor
qtreactor.install(app)

4.9.6 Non-Reactor GUI Integration
Tkinter

The support for Tkinter3 doesn’t use a specialized reactor. Instead, there is some specialized support code:

from Tkinter import *
from twisted.internet import tksupport

root = Tk()
root.withdraw()

Install the Reactor support
tksupport.install(root)

An example Twisted application that uses Tk can be found in twisted/words/ui/tkim.py.

2http://www.daa.com.au/j̃ames/pygtk/
3http://www.python.org/topics/tkinter/

CHAPTER 4. LOW-LEVEL TWISTED 87

wxPython

As with Tkinter (page 86), the support for integrating Twisted with a wxPython4 application uses specialized support
code rather than a simple reactor.

from wxPython.wx import *
from twisted.internet import wxsupport, reactor

myWxAppInstance = wxApp(0)
wxsupport.install(myWxAppInstance)

An example Twisted application that uses WxWindows can be found in doc/examples/wxdemo.py.

4http://www.wxpython.org

Chapter 5

Perspective Broker

5.1 Introduction to Perspective Broker

5.1.1 Introduction
Suppose you find yourself in control of both ends of the wire: you have two programs that need to talk to each other,
and you get to use any protocol you want. If you can think of your problem in terms of objects that need to make
method calls on each other, then chances are good that you can use twisted’s Perspective Broker protocol rather than
trying to shoehorn your needs into something like HTTP, or implementing yet another RPC mechanism1.

The Perspective Broker system (abbreviated “PB”, spawning numerous sandwich-related puns) is based upon a
few central concepts:

• serialization: taking fairly arbitrary objects and types, turning them into a chunk of bytes, sending them over a
wire, then reconstituting them on the other end. By keeping careful track of object ids, the serialized objects can
contain references to other objects and the remote copy will still be useful.

• remote method calls: doing something to a local object and causing a method to get run on a distant one. The
local object is called a RemoteReference, and you “do something” by running its .callRemote method.

This document will contain several examples that will (hopefully) appear redundant and verbose once you’ve
figured out what’s going on. To begin with, much of the code will just be labelled “magic”: don’t worry about how
these parts work yet. It will be explained more fully later.

5.1.2 Class Roadmap
To start with, here are the major classes involved in PB, with links to the file where they are defined (all of which are
under twisted/, of course). Don’t worry about understanding what they all do yet: it’s easier to figure them out through
their interaction than explaining them one at a time.

• Application : internet/app.py

• Service : spread/pb.py, subclassed from Service in cred/service.py
1Most of Twisted is like this. Hell, most of unix is like this: if you think it would be useful, someone else has probably thought that way in the

past, and acted on it, and you can take advantage of the tool they created to solve the same problem you’re facing now.

88

CHAPTER 5. PERSPECTIVE BROKER 89

• MultiService : internet/app.py

• Factory : internet/protocol.py

• BrokerFactory : spread/pb.py

• Broker : spread/pb.py

• AuthRoot : spread/pb.py

Other classes that are involved at some point:

• RemoteReference : spread/pb.py

• pb.Root : spread/pb.py, actually defined as Root in spread/flavors.py

• pb.Referenceable : spread/pb.py, actually defined as Referenceable in spread/flavors.
py

Classes that get involved when you start to care about authorization and security:

• Authorizer : cred/authorizer.py

• Identity : cred/identity.py

• Perspective : spread/pb.py, subclassed from Perspective in cred/perspective.py

Subclassing

Technically you can subclass anything you want, but techically you could also write a whole new framework, which
would just waste a lot of time. Knowing which classes are useful to change (by making subclasses) is one of the bits
of knowledge you pick up after using Twisted for a few weeks. Here are some hints to get started:

• Protocol: subclass this if you need to implement a new protocol on the wire, like HTTP or SMTP (except
that almost all of the standard ones are already implemented). You might also subclass one of the standard
implementations if you want to change its back-end behavior: make an SMTP server which actually stores the
messages in files instead of mailing them, or a Finger server that returns random messages instead of current
login status.

• pb.Root, pb.Referenceable: you’ll subclass these to make remotely-referenceable objects using PB.
You don’t need to change any of the existing behavior, just inherit all of it and add the remotely-accessible
methods that you want to export.

• pb.Perspective, pb.Service: you’ll probably end up subclassing these when you get into PB program-
ming (with authorization). There are a few methods you’ll change, especially with regards to creating new
Perspectives.

• Authorizer: subclass this if you want to get users from /etc/passwd, or a database, or LDAP, or other list of
usernames and passwords.

XXX: add lists of useful-to-override methods here

CHAPTER 5. PERSPECTIVE BROKER 90

5.1.3 Things you can Call Remotely
At this writing, there are three “flavors” of objects that can be accessed remotely through RemoteReference
objects. Each of these flavors has a rule for how the callRemotemessage is transformed into a local method call on
the server. In order to use one of these “flavors”, subclass them and name your published methods with the appropriate
prefix.

• twisted.spread.pb.Perspective

This is the first class we dealt with. Perspectives are slightly special because they are the root object that a given
user can access from a service. A user should only receive a reference to their own Perspective. PB works hard
to verify, as best it can, that any method that can be called on a perspective directly is being called on behalf of
the user who is represented by that perspective. (Services with unusual requirements for “on behalf of”, such as
simulations with the ability to posess another player’s avatar, are accomplished by providing indirected access
to another user’s Perspective.)

Perspectives are not usually serialized as remote references, so do not return a perspective directly.

Remotely accessible methods on Perspectives are named with the perspective prefix.

• twisted.spread.flavors.Referenceable

Referenceable objects are the simplest kind of PB object. You can call methods on them and return them from
methods to provide access to other objects’ methods.

However, when a method is called on a Referenceable, it’s not possible to tell who called it.

Remotely accessible methods on Referenceables are named with the remote prefix.

• twisted.spread.flavors.Viewable

Viewable objects are remotely referenceable objects which have the additional requirement that it must be possi-
ble to tell who is calling them. The argument list to a Viewable’s remote methods is modified in order to include
the Perspective representing the calling user.

Remotely accessible methods on Viewables are named with the view prefix.

5.1.4 Things you can Copy Remotely
In addition to returning objects that you can call remote methods on, you can return structured copies of local objects.

There are 2 basic flavors that allow for copying objects remotely. Again, you can use these by subclassing them.
In order to specify what state you want to have copied when these are serialized, you can either use the Python default
getstate or specialized method calls for that flavor.

• twisted.spread.flavors.Copyable

This is the simpler kind of object that can be copied. Every time this object is returned from a method or passed
as an argument, it is serialized and unserialized.

Copyable provides a method you can override, getStateToCopyFor(perspective), which allows
you to decide what an object will look like for the user who is requesting it. The perspective argument will
be an instance of the Perspective subclass for your service, the one which is either pasing an argument or
returning a result an instance of your Copyable class.

CHAPTER 5. PERSPECTIVE BROKER 91

For security reasons, in order to allow a particular Copyable class to actually be copied, you must declare a
RemoteCopy handler for that Copyable subclass. The easiest way to do this is to declare both in the same
module, like so:

from twisted.spread import flavors
class Foo(flavors.Copyable):

pass
class RemoteFoo(flavors.RemoteCopy):

pass
flavors.setCopierForClass(str(Foo), RemoteFoo)

In this case, each time a Foo is copied between peers, a RemoteFoo will be instantiated and populated with the
Foo’s state. If you do not do this, PB will complain that there have been security violations, and it may close the
connection.

• twisted.spread.flavors.Cacheable

Let me preface this with a warning: Cacheable may be hard to understand. The motivation for it may be unclear
if you don’t have some experience with real-world applications that use remote method calling of some kind.
Once you understand why you need it, what it does will likely seem simple and obvious, but if you get confused
by this, forget about it and come back later. It’s possible to use PB without understanding Cacheable at all.

Cacheable is a flavor which is designed to be copied only when necessary, and updated on the fly as changes are
made to it. When passed as an argument or a return value, if a Cacheable exists on the side of the connection it
is being copied to, it will be referred to by ID and not copied.

Cacheable is designed to minimize errors involved in replicating an object between multiple servers, espe-
cially those related to having stale information. In order to do this, Cacheable automatically registers observers
and queries state atomically, together. You can override the method getStateToCacheAndObserve
For(self, perspective, observer) in order to specify how your observers will be stored and up-
dated.

Similar to getStateToCopyFor, getStateToCacheAndObserveFor passes a Perspective in-
stance from your service. It also passes an observer, which is a remote reference to a “secret” fourth refer-
enceable flavor: RemoteCache.

A RemoteCache is simply the object that represents your Cacheable on the other side of the connection. It
is registered using the same method as RemoteCopy, above. RemoteCache is different, however, in that it will
be referenced by its peer. It acts as a Referenceable, where all methods prefixed with observe will be callable
remotely. It is recommended that your object maintain a list (note: library support for this is forthcoming!) of
observers, and update them using callRemotewhen the Cacheable changes in a way that should be noticeable
to its clients.

Finally, when all references to a Cacheable from a given Perspective are lost, stopped
Observing(perspective, observer) will be called on the Cacheable, with the same perspec-
tive/observer pair that getStateToCacheAndObserveFor was originally called with. Any cleanup re-
mote calls can be made there, as well as removing the observer object from any lists which it was previously in.
Any further calls to this observer object will be invalid.

CHAPTER 5. PERSPECTIVE BROKER 92

5.2 Using Perspective Broker

5.2.1 Basic Example
The first example to look at is a complete (although somewhat trivial) application. It uses BrokerFactory() on
the server side, and pb.getObjectAt() on the client side.

from twisted.spread import pb
from twisted.internet import app
class Echoer(pb.Root):

def remote_echo(self, st):
print ’echoing:’, st
return st

if __name__ == ’__main__’:
appl = app.Application("pbsimple")
appl.listenTCP(8789, pb.BrokerFactory(Echoer()))
appl.run()

Source listing — pbsimple.py

from twisted.spread import pb
from twisted.internet import reactor
def gotObject(object):

print "got object:",object
object.callRemote("echo", "hello network").addCallback(gotEcho)

def gotEcho(echo):
print ’server echoed:’,echo
reactor.stop()

def gotNoObject(reason):
print "no object:",reason
reactor.stop()

pb.getObjectAt("localhost", 8789, 30).addCallbacks(gotObject, gotNoObject)
reactor.run()

Source listing — pbsimpleclient.py

First we look at the server. This defines an Echoer class (derived from pb.Root), with a method called
remote echo(). pb.Root objects (because of their inheritance of pb.Referenceable, described later) can
define methods with names of the form remote *; a client which obtains a remote reference to that pb.Root object
will be able to invoke those methods.

The pb.Root-ish object is given to a pb.BrokerFactory(). This is a Factory object like any other: the
Protocol objects it creates for new connections know how to speak the PB protocol. The object you give to pb.
BrokerFactory() becomes the “root object”, which simply makes it available for the client to retrieve. The client
may only request references to the objects you want to provide it: this helps you implement your security model.
Because it is so common to export just a single object (and because a remote * method on that one can return a
reference to any other object you might want to give out), the simplest example is one where the BrokerFactory
is given the root object, and the client retrieves it.

CHAPTER 5. PERSPECTIVE BROKER 93

The client side calls pb.getObjectAt to make a connection to a given port. This is a convenience function (not
a method) which runs through the PB protocol steps necessary to retrieve the root object from a BrokerFactory
sitting at the given port.

Because .getObjectAt() has to make a network connection and exchange some data, it may take a while, so
it returns a Deferred, to which the gotObject() callback is attached. (See the documentation on Deferring Execution
(page 72) for a complete explanation of Deferreds). If and when the connection succeeds and a reference to the
remote root object is obtained, this callback is run. The first argument passed to the callback is a remote reference
to the distant root object. (you can give other arguments to the callback too, see the other parameters for .add
Callback() and .addCallbacks()).

The callback does:

object.callRemote("echo", "hello network")

which causes the server’s .remote echo() method to be invoked. (running .callRemote("boom")
would cause .remote boom() to be run, etc). Again because of the delay involved, callRemote() returns a
Deferred. Assuming the remote method was run without causing an exception (including an attempt to invoke an
unknown method), the callback attached to that Deferred will be invoked with any objects that were returned by
the remote method call.

In this example, the server’s Echoer object has a method invoked, exactly as if some code on the server side had
done:

echoer_object.remote_echo("hello network")

and from the definition of remote echo() we see that this just returns the same string it was given: “hello
network”.

From the client’s point of view, the remote call gets another Deferred object instead of that string. call
Remote()always returns a Deferred. This is why PB is described as a system for “translucent” remote method
calls instead of “transparent” ones: you cannot pretend that the remote object is really local. Trying to do so (as
some other RPC mechanisms do, coughCORBAcough) breaks down when faced with the asynchronous nature of the
network. Using Deferreds turns out to be a very clean way to deal with the whole thing.

The remote reference object (the one given to getObjectAt()’s success callback) is an instance the Remote
Reference class. This means you can use it to invoke methods on the remote object that it refers to. Only instances
of RemoteReference eligible for .callRemote(). The RemoteReference object is the one that lives on
the remote side (the client, in this case), not the local side (where the actual object is defined).

In our example, the local object is that Echoer() instance, which inherits from pb.Root, which inherits from
pb.Referenceable. It is that Referenceable class that makes the object eligible to be available for remote
method calls2. If you have an object that is Referenceable, then any client that manages to get a reference to it can
invoke any remote * methods they please.

Note:
The only thing they can do is invoke those methods. In particular, they cannot access attributes. From

a security point of view, you control what they can do by limiting what the remote * methods can do.
Also note: the other classes like Referenceable allow access to other methods, in particular

perspective * and view * may be accessed. Don’t write local-only methods with these names,
because then remote callers will be able to do more than you intended.

2There are a few other classes that can bestow this ability, but pb.Referenceable is the easiest to understand; see ’flavors’ below for details on
the others.

CHAPTER 5. PERSPECTIVE BROKER 94

Also also note: the other classes like pb.Copyabledo allow access to attributes, but you control
which ones they can see.

You don’t have to be a pb.Root to be remotely callable, but you do have to be pb.Referenceable. (Objects
that inherit from pb.Referenceable but not from pb.Root can be remotely called, but only pb.Root-ish
objects can be given to the BrokerFactory.)

5.2.2 Complete Example
A service is the “global” state associated with your application, which can contain things such as support for archiving
objects, basic abstractions common to all users, and collections of domain-specific objects. A perspective is the
representation of a user with respect to a particular service. For PB, a Perspective is where all interaction begins.
When a user logs in for the first time, all the methods they can initially call are methods of their Perspective. The
Perspective’s methods can return objects which themselves have methods that you can call, as well as copies of
objects, as described later.

from twisted.spread import pb

class QuoteReader(pb.Perspective):
def perspective_nextQuote(self):

return self.service.quoter.getQuote()

class QuoteService(pb.Service):
def __init__(self, quoter, serviceName, serviceParent, authorizer):

pb.Service.__init__(self, serviceName, serviceParent, authorizer)
self.quoter = quoter

perspectiveClass = QuoteReader

Quote Service and Perspective — pbquote.py

For examples of these, we’re returning to the TwistedQuotes project discussed in the “Writing Plugins”. The PB
Service for TwistedQuotes is pretty small. The only thing it needs to keep track of for itself is the quoter object;
PB’s service, that we will inherit from, already keeps track of perspectives.

The perspective is a QuoteReader, which publishes one method. By subclassing Perspective, we are
declaring that all methods with the perspective prefix are remotely accessible.

In order to get this Service published, so that we can actually connect to it, we need to re-visit the TAP building
plugin, so we can actually get an Application that has a PB broker factory listening on a port. (The default port for PB
is 8787.)

from TwistedQuotes import quoteproto # Protocol and Factory
from TwistedQuotes import quoters # "give me a quote" code
from TwistedQuotes import pbquote # perspective broker binding

from twisted.python import usage # twisted command-line processing
from twisted.spread import pb # Perspective Broker
from twisted.cred import authorizer # cred authorizer, to allow logins

CHAPTER 5. PERSPECTIVE BROKER 95

class Options(usage.Options):
optParameters = [["port", "p", 8007,

"Port number to listen on for QOTD protocol."],
["static", "s", "An apple a day keeps the doctor away.",
"A static quote to display."],

["file", "f", None,
"A fortune-format text file to read quotes from."],

["pb", "b", None,
"Port to listen with PB server"]]

def updateApplication(app, config):
if config["file"]: # If I was given a "file" option...

Read quotes from a file, selecting a random one each time,
quoter = quoters.FortuneQuoter([config[’file’]])

else: # otherwise,
read a single quote from the command line (or use the default).
quoter = quoters.StaticQuoter(config[’static’])

port = int(config["port"]) # TCP port to listen on
factory = quoteproto.QOTDFactory(quoter) # here we create a QOTDFactory
Finally, set up our factory, with its custom quoter, to create QOTD
protocol instances when events arrive on the specified port.
pbport = config[’pb’] # TCP PB port to listen on
if pbport:

auth = authorizer.DefaultAuthorizer(app)
pbserv = pbquote.QuoteService(quoter, "twisted.quotes", app, auth)
create a quotereader "guest" give that perspective a password and
create an account based on it, with the password "guest".
pbserv.createPerspective("guest").makeIdentity("guest")
pbfact = pb.BrokerFactory(pb.AuthRoot(auth))
app.listenTCP(int(pbport), pbfact)

app.listenTCP(port, factory)

TAP Plugin with PB Quotes Service support — quotetap2.py

In the TAP builder, we create a QuoteService that wraps the quoter. We then create a QuoteReader per-
spective and attach it to the QuoteService, through the createPerspective call inherited from Service.
Finally, we register with the QuoteService’s authorizer.

Accessing this through a client is fairly easy, as we can use the pb.connect convenience function.

from sys import stdout
from twisted.python import log
log.discardLogs()
from twisted.internet import reactor
from twisted.spread import pb

def connected(perspective):
perspective.callRemote(’nextQuote’).addCallbacks(success, failure)

CHAPTER 5. PERSPECTIVE BROKER 96

def success(quote):
stdout.write(quote + "\n")
reactor.stop()

def failure(error):
stdout.write("Failed to obtain quote.\n")
reactor.stop()

pb.connect("localhost", # host name
pb.portno, # port number
"guest", # identity name
"guest", # password
"twisted.quotes", # service name
"guest", # perspective name (usually same as identity)
None, # client reference, used to initiate server->client calls
30 # timeout of 30 seconds before connection gives up
).addCallbacks(connected, # what to do when we get connected

failure) # and what to do when we can’t

reactor.run() # start the main loop

PB Quotes Client Code — pbquoteclient.py

pb.connect will handle all the details of creating a connection and authenticating. It returns a Deferred,
which will have its callback called when pb.connect connects to a perspective, and have its errback called
when the object-connection fails for any reason, whether it’s host lookup failure, connection refusal, or incorrect
authentication credentials.

In this example, the connected callback should be made when the script is run. Looking at the code, it should
be clear that in the event of a connection success, the client will print out a quote and exit. If you start up a server, you
can see:

% mktap qotd --pb 8787
Saving qotd application to qotd.tap...
Saved.
% twistd -f qotd.tap
% python -c ’import TwistedQuotes.pbquoteclient’
An apple a day keeps the doctor away.

The argument to this callback, perspective, is a RemoteReference. The perspective reference repre-
sents a reference to a QuoteReader perspective object.

RemoteReference objects have one method which is their purpose for being: callRemote. This method
allows you to call a remote method on the object being referred to by the Reference. RemoteReference.call
Remote, like pb.connect, returns a Deferred. When a response to the method-call being sent arrives, the
Deferred’s callback or errback will be made, depending on whether an error occurred in processing the
method-call.

This introduction to PB does not showcase all of the features that it provides, but hopefully it gives you a good
idea of where to get started setting up your own application. Here are some of the othe building blocks you can use.

CHAPTER 5. PERSPECTIVE BROKER 97

5.2.3 Passing more references
Here is an example of using pb.Referenceable in a second class. The second Referenceable object can
have remote methods invoked too, just like the first. In this example, the initial root object has a method that returns a
reference to the second object.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class Two(pb.Referenceable):
def remote_three(self, arg):

print "Two.three was given", arg

class One(pb.Root):
def remote_getTwo(self):

two = Two()
print "returning a Two called", two
return two

app = twisted.internet.app.Application("pb1server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — pb1server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.getObjectAt("localhost", 8800, 30)
def1.addCallbacks(got_obj1, err_obj1)
reactor.run()

def err_obj1(reason):
print "error getting first object", reason
reactor.stop()

def got_obj1(obj1):
print "got first object:", obj1
print "asking it to getTwo"
def2 = obj1.callRemote("getTwo")
def2.addCallbacks(got_obj2)

CHAPTER 5. PERSPECTIVE BROKER 98

def got_obj2(obj2):
print "got second object:", obj2
print "telling it to do three(12)"
obj2.callRemote("three", 12)

main()

Source listing — pb1client.py

The root object has a method called remote getTwo, which returns the Two() instance. On the client end, the
callback gets a RemoteReference to that instance. The client can then invoke two’s .remote three()method.

You can use this technique to provide access to arbitrary sets of objects. Just remember that any object that might
get passed “over the wire” must inherit from Referenceable (or one of the other flavors). If you try to pass a non-
Referenceable object (say, by returning one from a remote * method), you’ll get an InsecureJelly exception3.

5.2.4 References can come back to you
If your server gives a reference to a client, and then that client gives the reference back to the server, the server will
wind up with the same object it gave out originally. The serialization layer watches for returning reference identifiers
and turns them into actual objects. You need to stay aware of where the object lives: if it is on your side, you do actual
method calls. If it is on the other side, you do .callRemote()4.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class Two(pb.Referenceable):
def remote_print(self, arg):

print "two.print was given", arg

class One(pb.Root):
def __init__(self, two):

#pb.Root.__init__(self) # pb.Root doesn’t implement __init__
self.two = two

def remote_getTwo(self):
print "One.getTwo(), returning my two called", two
return two

def remote_checkTwo(self, newtwo):
print "One.checkTwo(): comparing my two", self.two
print "One.checkTwo(): against your two", newtwo

3This can be overridden, by subclassing one of the Serializable flavors and defining custom serialization code for your class. See XXX for
details.

4The binary nature of this local vs. remote scheme works because you cannot give RemoteReferences to a third party. If you could, then your
object A could go to B, B could give it to C, C might give it back to you, and you would be hard pressed to tell if the object lived in C’s memory
space, in B’s, or if it was really your own object, tarnished and sullied after being handed down like a really ugly picture that your great aunt owned
and which nobody wants but which nobody can bear to throw out. Ok, not really like that, but you get the idea.

CHAPTER 5. PERSPECTIVE BROKER 99

if two == newtwo:
print "One.checkTwo(): our twos are the same"

app = twisted.internet.app.Application("pb2server")
two = Two()
root_obj = One(two)
app.listenTCP(8800, pb.BrokerFactory(root_obj))
app.run(save=0)

Source listing — pb2server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
foo = Foo()
pb.getObjectAt("localhost", 8800, 30).addCallback(foo.step1)
reactor.run()

keeping globals around is starting to get ugly, so we use a simple class
instead. Instead of hooking one function to the next, we hook one method
to the next.

class Foo:
def __init__(self):

self.oneRef = None

def step1(self, obj):
print "got one object:", obj
self.oneRef = obj
print "asking it to getTwo"
self.oneRef.callRemote("getTwo").addCallback(self.step2)

def step2(self, two):
print "got two object:", two
print "giving it back to one"
print "one is", self.oneRef
self.oneRef.callRemote("checkTwo", two)

main()

Source listing — pb2client.py

The server gives a Two() instance to the client, who then returns the reference back to the server. The server
compares the “two” given with the “two” received and shows that they are the same, and that both are real objects

CHAPTER 5. PERSPECTIVE BROKER 100

instead of remote references.
A few other techniques are demonstrated in pb2client.py. One is that the callbacks are are added with

.addCallback instead of .addCallbacks. As you can tell from the Deferred (page 72) documentation, .add
Callback is a simplified form which only adds a success callback. The other is that to keep track of state from one
callback to the next (the remote reference to the main One() object), we create a simple class, store the reference in
an instance thereof, and point the callbacks at a sequence of bound methods. This is a convenient way to encapsulate
a state machine. Each response kicks off the next method, and any data that needs to be carried from one state to the
next can simply be saved as an attribute of the object.

Remember that the client can give you back any remote reference you’ve given them. Don’t base your zillion-
dollar stock-trading clearinghouse server on the idea that you trust the client to give you back the right reference. The
security model inherent in PB means that they can only give you back a reference that you’ve given them for the current
connection (not one you’ve given to someone else instead, nor one you gave them last time before the TCP session
went down, nor one you haven’t yet given to the client), but just like with URLs and HTTP cookies, the particular
reference they give you is entirely under their control.

5.2.5 References to client-side objects
Anything that’s Referenceable can get passed across the wire, in either direction. The “client” can give a reference to
the “server”, and then the server can use .callRemote() to invoke methods on the client end. This fuzzes the distinction
between “client” and “server”: the only real difference is who initiates the original TCP connection; after that it’s all
symmetric.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class One(pb.Root):
def remote_takeTwo(self, two):

print "received a Two called", two
print "telling it to print(12)"
two.callRemote("print", 12)

app = twisted.internet.app.Application("pb3server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — pb3server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

class Two(pb.Referenceable):
def remote_print(self, arg):

print "Two.print() called with", arg

CHAPTER 5. PERSPECTIVE BROKER 101

def main():
two = Two()
def1 = pb.getObjectAt("localhost", 8800, 30)
def1.addCallback(got_obj, two) # hands our ’two’ to the callback
reactor.run()

def got_obj(obj, two):
print "got One:", obj
print "giving it our two"
obj.callRemote("takeTwo", two)

main()

Source listing — pb3client.py

In this example, the client gives a reference to its own object to the server. The server then invokes a remote
method on the client-side object.

5.2.6 Raising Remote Exceptions
Everything so far has covered what happens when things go right. What about when they go wrong? The Python Way
is to raise an exception of some sort. The Twisted Way is the same.

The only special thing you do is to define your Exception subclass by deriving it from pb.Error. (You do
define Exception subclasses, right? String exceptions are, like, so 5 minutes ago. Get with the new century, ok?).
When any remotely-invokable method (like remote * or perspective *) raises a pb.Error-derived exception,
a serialized form of that Exception object will be sent back over the wire5. The other side (which did callRemote)
will have the “errback” callback run with a Failure object that contains a copy of the exception object. This
Failure object can be queried to retrieve the error message and a stack traceback.

Failure is a special class, defined in twisted/python/failure.py, created to make it easier to handle
asynchronous exceptions. Just as exception handlers can be nested, errback functions can be chained. If one errback
can’t handle the particular type of failure, it can be “passed along” to a errback handler further down the chain.

For simple purposes, think of the Failure as just a container for remotely-thrown Exception objects. To
extract the string that was put into the exception, use its .getErrorMessage() method. To get the type of the
exception (as a string), look at its .type attribute. The stack traceback is available too. The intent is to let the errback
function get just as much information about the exception as Python’s normal try: clauses do, even though the
exception occurred in somebody else’s memory space at some unknown time in the past.

#! /usr/bin/python

from twisted.spread import pb
import twisted.internet.app

class MyError(pb.Error):

5To be precise, the Failure will be sent if any exception is raised, not just pb.Error-derived ones. But the server will print ugly error messages if
you raise ones that aren’t derived from pb.Error.

CHAPTER 5. PERSPECTIVE BROKER 102

"""This is an Expected Exception. Something bad happened."""
pass

class MyError2(Exception):
"""This is an Unexpected Exception. Something really bad happened."""
pass

class One(pb.Root):
def remote_broken(self):

msg = "fall down go boom"
print "raising a MyError exception with data ’%s’" % msg
raise MyError(msg)

def remote_broken2(self):
msg = "hadda owie"
print "raising a MyError2 exception with data ’%s’" % msg
raise MyError2(msg)

def main():
app = twisted.internet.app.Application("exc_server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

if __name__ == ’__main__’:
main()

Source listing — exc server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
d = pb.getObjectAt("localhost", 8800, 30)
d.addCallbacks(got_obj)
reactor.run()

def got_obj(obj):
change "broken" into "broken2" to demonstrate an unhandled exception
d2 = obj.callRemote("broken")
d2.addCallback(working)
d2.addErrback(broken)

def working():
print "erm, it wasn’t *supposed* to work.."

CHAPTER 5. PERSPECTIVE BROKER 103

def broken(reason):
print "got remote Exception"
reason should be a Failure (or subclass) holding the MyError exception
print " .__class__ =", reason.__class__
print " .getErrorMessage() =", reason.getErrorMessage()
print " .type =", reason.type
reactor.stop()

main()

Source listing — exc client.py

% ./exc_client.py
got remote Exception
.__class__ = twisted.spread.pb.CopiedFailure
.getErrorMessage() = fall down go boom
.type = __main__.MyError

Main loop terminated.

Oh, and what happens if you raise some other kind of exception? Something that isn’t subclassed from pb.
Error? Well, those are called “unexpected exceptions”, which make Twisted think that something has really gone
wrong. These will raise an exception on the server side. This won’t break the connection (the exception is trapped,
just like most exceptions that occur in response to network traffic), but it will print out an unsightly stack trace on
the server’s stderr with a message that says “Peer Will Receive PB Traceback”, just as if the exception had happened
outside a remotely-invokable method. (This message will go the current log target, if log.startLoggingwas used
to redirect it). The client will get the same Failure object in either case, but subclassing your exception from pb.
Error is the way to tell Twisted that you expect this sort of exception, and that it is ok to just let the client handle it
instead of also asking the server to complain. Look at exc client.py and change it to invoke broken2() instead
of broken() to see the change in the server’s behavior.

If you don’t add an errback function to the Deferred, then a remote exception will still send a Failure
object back over, but it will get lodged in the Deferred with nowhere to go. When that Deferred finally goes out
of scope, the side that did callRemote will emit a message about an “Unhandled error in Deferred”, along with an
ugly stack trace. It can’t raise an exception at that point (after all, the callRemote that triggered the problem is long
gone), but it will emit a traceback. So be a good programmer and always add errback handlers, even if they are just
calls to log.err.

5.2.7 Try/Except blocks and Failure.trap
To implement the equivalent of the Python try/except blocks (which can trap particular kinds of exceptions and pass
others “up” to higher-level try/except blocks), you can use the .trap() method in conjunction with multiple
errback handlers on the Deferred. Re-raising an exception in an errback handler serves to pass that new
exception to the next handler in the chain. The trap method is given a list of exceptions to look for, and will re-raise
anything that isn’t on the list. Instead of passing unhandled exceptions “up” to an enclosing try block, this has the
effect of passing the exception “off” to later errback handlers on the same Deferred. The trap calls are used in
chained errbacks to test for each kind of exception in sequence.

#! /usr/bin/python

CHAPTER 5. PERSPECTIVE BROKER 104

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb

class MyException(pb.Error):
pass

class One(pb.Root):
def remote_fooMethod(self, arg):

if arg == "panic!":
raise MyException

return "response"
def remote_shutdown(self):

reactor.stop()

app = Application("trap_server")
app.listenTCP(8800, pb.BrokerFactory(One()))
app.run(save=0)

Source listing — trap server.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class MyException(pb.Error): pass
class MyOtherException(pb.Error): pass

class ScaryObject:
not safe for serialization
pass

def worksLike(obj):
the callback/errback sequence in class One works just like an
asynchronous version of the following:
try:

response = obj.callMethod(name, arg)
except pb.DeadReferenceError:

print " stale reference: the client disconnected or crashed"
except jelly.InsecureJelly:

print " InsecureJelly: you tried to send something unsafe to them"
except (MyException, MyOtherException):

print " remote raised a MyException" # or MyOtherException

CHAPTER 5. PERSPECTIVE BROKER 105

except:
print " something else happened"

else:
print " method successful, response:", response

class One:
def worked(self, response):

print " method successful, response:", response
def check_InsecureJelly(self, failure):

failure.trap(jelly.InsecureJelly)
print " InsecureJelly: you tried to send something unsafe to them"
return None

def check_MyException(self, failure):
which = failure.trap(MyException, MyOtherException)
if which == MyException:

print " remote raised a MyException"
else:

print " remote raised a MyOtherException"
return None

def catch_everythingElse(self, failure):
print " something else happened"
log.err(failure)
return None

def doCall(self, explanation, arg):
print explanation
try:

deferred = self.remote.callRemote("fooMethod", arg)
deferred.addCallback(self.worked)
deferred.addErrback(self.check_InsecureJelly)
deferred.addErrback(self.check_MyException)
deferred.addErrback(self.catch_everythingElse)

except pb.DeadReferenceError:
print " stale reference: the client disconnected or crashed"

def callOne(self):
self.doCall("callOne: call with safe object", "safe string")

def callTwo(self):
self.doCall("callTwo: call with dangerous object", ScaryObject())

def callThree(self):
self.doCall("callThree: call that raises remote exception", "panic!")

def callShutdown(self):
print "telling them to shut down"
self.remote.callRemote("shutdown")

def callFour(self):
self.doCall("callFour: call on stale reference", "dummy")

CHAPTER 5. PERSPECTIVE BROKER 106

def got_obj(self, obj):
self.remote = obj
reactor.callLater(1, self.callOne)
reactor.callLater(2, self.callTwo)
reactor.callLater(3, self.callThree)
reactor.callLater(4, self.callShutdown)
reactor.callLater(5, self.callFour)
reactor.callLater(6, reactor.stop)

deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(One().got_obj)
reactor.run()

Source listing — trap client.py

% ./trap_client.py
callOne: call with safe object
method successful, response: response

callTwo: call with dangerous object
InsecureJelly: you tried to send something unsafe to them

callThree: call that raises remote exception
remote raised a MyException

telling them to shut down
callFour: call on stale reference
stale reference: the client disconnected or crashed

%

In this example, callTwo tries to send an instance of a locally-defined class through callRemote. The default
security model implemented by pb.Jelly on the remote end will not allow unknown classes to be unserialized (i.e.
taken off the wire as a stream of bytes and turned back into an object: a living, breathing instance of some class): one
reason is that it does not know which local class ought to be used to create an instance that corresponds to the remote
object eat breaking space 6. The receiving end of the connection gets to decide what to accept and what to reject.
It indicates its disapproval by raising a pb.InsecureJelly exception. Because it occurs at the remote end, the
exception is returned to the caller asynchronously, so an errback handler for the associated Deferred is run. That
errback receives a Failure which wraps the InsecureJelly.

Remember that trap re-raises exceptions that it wasn’t asked to look for. You can only check for one set of
exceptions per errback handler: all others must be checked in a subsequent handler. check MyException shows
how multiple kinds of exceptions can be checked in a single errback: give a list of exception types to trap, and it
will return the matching member. In this case, the kinds of exceptions we are checking for (MyException and My
OtherException) may be raised by the remote end: they inherit from pb.Error.

6The naive approach of simply doing import SomeClass to match a remote caller who claims to have an object of type “Some-
Class” could have nasty consequences for some modules that do significant operations in their init methods (think telnetlib.
Telnet(host=’localhost’, port=’chargen’), or even more powerful classes that you have available in your server program). Al-
lowing a remote entity to create arbitrary classes in your namespace is nearly equivalent to allowing them to run arbitrary code.

The pb.InsecureJelly exception arises because the class being sent over the wire has not been registered with the serialization layer (known
as jelly). The easiest way to make it possible to copy entire class instances over the wire is to have them inherit from pb.Copyable, and then
to use setUnjellyableForClass(remoteClass, localClass) on the receiving side. See XXX for an example.

CHAPTER 5. PERSPECTIVE BROKER 107

The handler can return None to terminate processing of the errback chain (to be precise, it switches to the callback
that follows the errback; if there is no callback then processing terminates). It is a good idea to put an errback that
will catch everything (no trap tests, no possible chance of raising more exceptions, always returns None) at the end
of the chain. Just as with regular try: except: handlers, you need to think carefully about ways in which your
errback handlers could themselves raise exceptions. The extra importance in an asynchronous environment is that an
exception that falls off the end of the Deferred will not be signalled until that Deferred goes out of scope, and at
that point may only cause a log message (which could even be thrown away if log.startLogging is not used to
point it at stdout or a log file). In contrast, a synchronous exception that is not handled by any other except: block
will very visibly terminate the program immediately with a noisy stack trace.

callFour shows another kind of exception that can occur while using callRemote: pb.DeadReference
Error. This one occurs when the remote end has disconnected or crashed, leaving the local side with a stale reference.
This kind of exception happens to be reported right away (XXX: is this guaranteed? probably not), so must be caught
in a traditional synchronous try: except pb.DeadReferenceError block.

Yet another kind that can occur is a pb.PBConnectionLost exception. This occurs (asynchronously) if the
connection was lost while you were waiting for a callRemote call to complete. When the line goes dead, all
pending requests are terminated with this exception. Note that you have no way of knowing whether the request made
it to the other end or not, nor how far along in processing it they had managed before the connection was lost. XXX:
explain transaction semantics, find a decent reference.

5.3 PB Copyable: Passing Complex Types

5.3.1 Overview
This chapter focuses on how to use PB to pass complex types (specifically class instances) to and from a remote
process. The first section is on simply copying the contents of an object to a remote process (pb.Copyable). The
second covers how to copy those contents once, then update them later when they change (Cacheable).

5.3.2 Motivation
From the previous chapter (page 92), you’ve seen how to pass basic types to a remote process, by using them in
the arguments or return values of a callRemote function. However, if you’ve experimented with it, you may have
discovered problems when trying to pass anything more complicated than a primitive int/list/dict/string type, or another
pb.Referenceable object. At some point you want to pass entire objects between processes, instead of having to
reduce them down to dictionaries on one end and then re-instantiating them on the other.

5.3.3 Passing Objects
The most obvious and straightforward way to send an object to a remote process is with something like the following
code. It also happens that this code doesn’t work, as will be explained below.

class LilyPond:
def __init__(self, frogs):
self.frogs = frogs

pond = LilyPond(12)
ref.callRemote("sendPond", pond)

CHAPTER 5. PERSPECTIVE BROKER 108

If you try to run this, you might hope that a suitable remote end which implements the remote sendPond
method would see that method get invoked with an instance from the LilyPond class. But instead, you’ll encounter
the dreaded InsecureJelly exception. This is Twisted’s way of telling you that you’ve violated a security restric-
tion, and that the receiving end refuses to accept your object.

Security Options

What’s the big deal? What’s wrong with just copying a class into another process’ namespace?
Reversing the question might make it easier to see the issue: what is the problem with accepting a stranger’s request

to create an arbitrary object in your local namespace? The real question is how much power you are granting them:
what actions can they convince you to take on the basis of the bytes they are sending you over that remote connection.

Objects generally represent more power than basic types like strings and dictionaries because they also contain (or
reference) code, which can modify other data structures when executed. Once previously-trusted data is subverted, the
rest of the program is compromised.

The built-in Python “batteries included” classes are relatively tame, but you still wouldn’t want to let a foreign
program use them to create arbitrary objects in your namespace or on your computer. Imagine a protocol that involved
sending a file-like object with a read() method that was supposed to used later to retrieve a document. Then
imagine what if that object were created with os.fdopen("/̃.gnupg/secring.gpg"). Or an instance of
telnetlib.Telnet("localhost", "chargen").

Classes you’ve written for your own program are likely to have far more power. They may run code during
init , or even have special meaning simply because of their existence. A program might have User objects to

represent user accounts, and have a rule that says all User objects in the system are referenced when authorizing a
login session. (In this system, User. init would probably add the object to a global list of known users). The
simple act of creating an object would give access to somebody. If you could be tricked into creating a bad object, an
unauthorized user would get access.

So object creation needs to be part of a system’s security design. The dotted line between “trusted inside” and
“untrusted outside” needs to describe what may be done in response to outside events. One of those events is the
receipt of an object through a PB remote procedure call, which is a request to create an object in your “inside”
namespace. The question is what to do in response to it. For this reason, you must explicitly specific what remote
classes will be accepted, and how their local representatives are to be created.

What class to use?

Another basic question to answer before we can do anything useful with an incoming serialized object is: what class
should we create? The simplistic answer is to create the “same kind” that was serialized on the sender’s end of the
wire, but this is not as easy or as straightforward as you might think. Remember that the request is coming from a
different program, using a potentially different set of class libraries. In fact, since PB has also been implemented in
Java, Emacs-Lisp, and other languages, there’s no guarantee that the sender is even running Python! All we know on
the receiving end is a list of two things which describe the instance they are trying to send us: the name of the class,
and a representation of the contents of the object.

PB lets you specify the mapping from remote class names to local classes with the setUnjellyableFor
Class function 7. This function takes a remote/sender class reference (either the fully-qualified name as used by the

7Note that, in this context, “unjelly” is a verb with the opposite meaning of “jelly”. The verb “to jelly” means to serialize an object or data
structure into a sequence of bytes (or other primitive transmittable/storable representation), while “to unjelly” means to unserialize the bytestream
into a live object in the receiver’s memory space. “Unjellyable” is a noun, (not an adjective), referring to the the class that serves as a destination or
recipient of the unjellying process. “A is unjellyable into B” means that a serialized representation A (of some remote object) can be unserialized

CHAPTER 5. PERSPECTIVE BROKER 109

sending end, or a class object from which the name can be extracted), and a local/recipient class (used to create the
local representation for incoming serialized objects). Whenever the remote end sends an object, the class name that
they transmit is looked up in the table controlled by this function. If a matching class is found, it is used to create the
local object. If not, you get the InsecureJelly exception.

In general you expect both ends to share the same codebase: either you control the program that is running on
both ends of the wire, or both programs share some kind of common language that is implemented in code which
exists on both ends. You wouldn’t expect them to send you an object of the MyFooziWhatZit class unless you also
had a definition for that class. So it is reasonable for the Jelly layer to reject all incoming classes except the ones that
you have explicitly marked with setUnjellyableForClass. But keep in mind that the sender’s idea of a User
object might differ from the recipient’s, either through namespace collisions between unrelated packages, version skew
between nodes that haven’t been updated at the same rate, or a malicious intruder trying to cause your code to fail in
some interesting or potentially vulnerable way.

5.3.4 pb.Copyable
Ok, enough of this theory. How do you send a fully-fledged object from one side to the other?

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor

class LilyPond:
def setStuff(self, color, numFrogs):

self.color = color
self.numFrogs = numFrogs

def countFrogs(self):
print "%d frogs" % self.numFrogs

class CopyPond(LilyPond, pb.Copyable):
pass

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):

into a local object of type B. It is these objects “B” that are the “Unjellyable” second argument of the setUnjellyableForClass function.
In particular, “unjellyable” does not mean “cannot be jellied”. Unpersistable means “not persistable”, but “unjelly”, “unserialize”, and

“unpickle” mean to reverse the operations of “jellying”, “serializing”, and “pickling”.

CHAPTER 5. PERSPECTIVE BROKER 110

print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
from copy_sender import CopyPond # so it’s not __main__.CopyPond
pond = CopyPond()
pond.setStuff("green", 7)
pond.countFrogs()
class name:
print ".".join([pond.__class__.__module__, pond.__class__.__name__])

sender = Sender(pond)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing — copy sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
from copy_sender import LilyPond, CopyPond

from twisted.python import log
import sys
#log.startLogging(sys.stdout)

class ReceiverPond(pb.RemoteCopy, LilyPond):
pass

pb.setUnjellyableForClass(CopyPond, ReceiverPond)

class Receiver(pb.Root):
def remote_takePond(self, pond):

CHAPTER 5. PERSPECTIVE BROKER 111

print " got pond:", pond
pond.countFrogs()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — copy receiver.py

The sending side has a class called LilyPond. To make this eligble for transport through callRemote (either
as an argument, a return value, or something referenced by either of those [like a dictionary value]), it must inherit
from one of the four Serializable classes. In this section, we focus on Copyable. The copyable subclass of
LilyPond is called CopyPond. We create an instance of it and send it through callRemote as an argument to
the receiver’s remote takePond method. The Jelly layer will serialize (“jelly”) that object as an instance with a
class name of “copy sender.CopyPond” and some chunk of data that represents the object’s state. pond. class .
module and pond. class . name are used to derive the class name string. The object’s getState

ToCopy method is used to get the state: this is provided by pb.Copyable, and the default just retrieves self.
dict . This works just like the optional getstate method used by pickle. The pair of name and state are

sent over the wire to the receiver.
The receiving end defines a local class named ReceiverPond to represent incoming LilyPond instances. This

class derives from the sender’s LilyPond class (with a fully-qualified name of copy sender.LilyPond), which
specifies how we expect it to behave. We trust that this is the same LilyPond class as the sender used. (At the very
least, we hope ours will be able to accept a state created by theirs). It also inherits from pb.RemoteCopy, which is
a requirement for all classes that act in this local-representative role (those which are given to the second argument of
setUnjellyableForClass). RemoteCopy provides the methods that tell the Jelly layer how to create the local
object from the incoming serialized state.

Then setUnjellyableForClass is used to register the two classes. This has two effects: instances of the
remote class (the first argument) will be allowed in through the security layer, and instances of the local class (the
second argument) will be used to contain the state that is transmitted when the sender serializes the remote object.

When the receiver unserializes (“unjellies”) the object, it will create an instance of the local ReceiverPond
class, and hand the transmitted state (usually in the form of a dictionary) to that object’s setCopyableState
method. This acts just like the setstate method that pickle uses when unserializing an object. getState
ToCopy/setCopyableState are distinct from getstate / setstate to allow objects to be persisted
(across time) differently than they are transmitted (across [memory]space).

When this is run, it produces the following output:

% ./copy_receiver.py
twisted.spread.pb.BrokerFactory starting on 8800
Starting factory <twisted.spread.pb.BrokerFactory instance at 0x815085c>

[program pauses here until copy_sender.py is run]
got pond: <__main__.ReceiverPond instance at 0x832941c>

7 frogs

% ./copy_sender.py

CHAPTER 5. PERSPECTIVE BROKER 112

7 frogs
copy_sender.CopyPond
pond arrived safe and sound
Main loop terminated.
%

Controlling the Copied State

By overriding getStateToCopy and setCopyableState, you can control how the object is transmitted over
the wire. For example, you might want perform some data-reduction: pre-compute some results instead of sending
all the raw data over the wire. Or you could replace references to a local object on the sender’s side with markers
before sending, then upon receipt replace those markers with references to a receiver-side proxy that could perform
the same operations against a local cache of data. Whatever getStateToCopy returns from the sending object will
be serialized and sent over the wire; setCopyableState gets whatever comes over the wire and is responsible for
setting up the state of the object it lives in.

#! /usr/bin/python

from twisted.spread import pb

class FrogPond:
def __init__(self, numFrogs, numToads):

self.numFrogs = numFrogs
self.numToads = numToads

def count(self):
return self.numFrogs + self.numToads

class SenderPond(FrogPond, pb.Copyable):
def getStateToCopy(self):

d = self.__dict__.copy()
d[’frogsAndToads’] = d[’numFrogs’] + d[’numToads’]
del d[’numFrogs’]
del d[’numToads’]
return d

class ReceiverPond(pb.RemoteCopy):
def setCopyableState(self, state):

self.__dict__ = state
def count(self):

return self.frogsAndToads

pb.setUnjellyableForClass(SenderPond, ReceiverPond)

Source listing — copy2 classes.py

#! /usr/bin/python

CHAPTER 5. PERSPECTIVE BROKER 113

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from copy2_classes import SenderPond

class Sender:
def __init__(self, pond):

self.pond = pond

def got_obj(self, obj):
d = obj.callRemote("takePond", self.pond)
d.addCallback(self.ok).addErrback(self.notOk)

def ok(self, response):
print "pond arrived", response
reactor.stop()

def notOk(self, failure):
print "error during takePond:"
if failure.type == jelly.InsecureJelly:

print " InsecureJelly"
else:

print failure
reactor.stop()
return None

def main():
pond = SenderPond(3, 4)
print "count %d" % pond.count()

sender = Sender(pond)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.got_obj)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing — copy2 sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
import copy2_classes # needed to get ReceiverPond registered with Jelly

CHAPTER 5. PERSPECTIVE BROKER 114

class Receiver(pb.Root):
def remote_takePond(self, pond):

print " got pond:", pond
print " count %d" % pond.count()
return "safe and sound" # positive acknowledgement

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — copy2 receiver.py

In this example, the classes are defined in a separate source file, which also sets up the binding between them.
The SenderPond and ReceiverPond are unrelated save for this binding: they happen to implement the same
methods, but use different internal instance variables to accomplish them.

The recipient of the object doesn’t even have to import the class definition into their namespace. It is sufficient
that they import the class definition (and thus execute the setUnjellyableForClass statement). The Jelly layer
remembers the class definition until a matching object is received. The sender of the object needs the definition, of
course, to create the object in the first place.

When run, the copy2 example emits the following:

% ./copy2_receiver.py
twisted.spread.pb.BrokerFactory starting on 8800
Starting factory <twisted.spread.pb.BrokerFactory instance at 0x8337f2c>
got pond: <copy2_classes.ReceiverPond instance at 0x8150dbc>
count 7

% ./copy2_sender.py
count 7
pond arrived safe and sound
Main loop terminated.
%

Things To Watch Out For

• The first argument to setUnjellyableForClass must refer to the class as known by the sender. The
sender has no way of knowing about how your local import statements are set up, and Python’s flexible
namespace semantics allow you to access the same class through a variety of different names. You must match
whatever the sender does. Having both ends import the class from a separate file, using a canonical module
name (no “sibiling imports”), is a good way to get this right, especially when both the sending and the receiving
classes are defined together, with the setUnjellyableForClass immediately following them. (XXX: this
works, but does this really get the right names into the table? Or does it only work because both are defined in
the same (wrong) place?)

CHAPTER 5. PERSPECTIVE BROKER 115

• The class that is sent must inherit from pb.Copyable. The class that is registered to receive it must inherit
from pb.RemoteCopy8.

• The same class can be used to send and receive. Just have it inherit from both pb.Copyable and pb.Remote
Copy. This will also make it possible to send the same class symmetrically back and forth over the wire. But
don’t get confused about when it is coming (and using setCopyableState) versus when it is going (using
getStateToCopy).

• InsecureJelly exceptions are raised by the receiving end. They will be delivered asynchronously to an
errback handler. If you do not add one to the Deferred returned by callRemote, then you will never
receive notification of the problem.

• The class that is derived from pb.RemoteCopy will be created using a constructor init method that
takes no arguments. All setup must be performed in the setCopyableState method. As the docstring on
RemoteCopy says, don’t implement a constructor that requires arguments in a subclass of RemoteCopy.
XXX: check this, the code around jelly. Unjellier.unjelly:489 tries to avoid calling init just in case the
constructor requires args.

More Information

• pb.Copyable is mostly implemented in twisted.spread.flavors, and the docstrings there are the
best source of additional information.

• Copyable is also used in twisted.web.distrib to deliver HTTP requests to other programs for render-
ing, allowing subtrees of URL space to be delegated to multiple programs (on multiple machines).

• twisted.manhole.exploreralso uses Copyable to distribute debugging information from the program
under test to the debugging tool.

5.3.5 pb.Cacheable
Sometimes the object you want to send to the remote process is big and slow. “big” means it takes a lot of data (storage,
network bandwidth, processing) to represent its state. “slow” means that state doesn’t change very frequently. It may
be more efficient to send the full state only once, the first time it is needed, then afterwards only send the differences
or changes in state whenever it is modified. The pb.Cacheable class provides a framework to implement this.

pb.Cacheable is derived from pb.Copyable, so it is based upon the idea of an object’s state being captured
on the sending side, and then turned into a new object on the receiving side. This is extended to have an object
“publishing” on the sending side (derived from pb.Cacheable), matched with one “observing” on the receiving
side (derived from pb.RemoteCache).

To effectively use pb.Cacheable, you need to isolate changes to your object into accessor functions (specifi-
cally “setter” functions). Your object needs to get control every single time some attribute is changed9.

You derive your sender-side class from pb.Cacheable, and you add two methods: getStateToCacheAnd
ObserveFor and stoppedObserving. The first is called when a remote caching reference is first created, and

8pb.RemoteCopy is actually defined as flavors.RemoteCopy, but pb.RemoteCopy is the preferred way to access it
9of course you could be clever and add a hook to setattr , along with magical change-announcing subclasses of the usual builtin types, to

detect changes that result from normal “=” set operations. The result might be hard to maintain or extend, though.

CHAPTER 5. PERSPECTIVE BROKER 116

retrieves the data with which the cache is first filled. It also provides an object called the “observer” 10 that points at
that receiver-side cache. Every time the state of the object is changed, you give a message to the observer, informing
them of the change. The other method, stoppedObserving, is called when the remote cache goes away, so that
you can stop sending updates.

On the receiver end, you make your cache class inherit from pb.RemoteCache, and implement the set
CopyableState as you would for a pb.RemoteCopy object. In addition, you must implement methods to receive
the updates sent to the observer by the pb.Cacheable: these methods should have names that start with observe ,
and match the callRemote invocations from the sender side just as the usual remote * and perspective *
methods match normal callRemote calls.

The first time a reference to the pb.Cacheable object is sent to any particular recipient, a sender-side Observer
will be created for it, and the getStateToCacheAndObserveFor method will be called to get the current state
and register the Observer. The state which that returns is sent to the remote end and turned into a local representation
using setCopyableState just like pb.RemoteCopy, described above (in fact it inherits from that class).

After that, your “setter” functions on the sender side should call callRemote on the Observer, which causes
observe * methods to run on the receiver, which are then supposed to update the receiver-local (cached) state.

When the receiver stops following the cached object and the last reference goes away, the pb.RemoteCache
object can be freed. Just before it dies, it tells the sender side it no longer cares about the original object. When that
reference count goes to zero, the Observer goes away and the pb.Cacheable object can stop announcing every
change that takes place. The stoppedObserving method is used to tell the pb.Cacheable that the Observer
has gone away.

With the pb.Cacheable and pb.RemoteCache classes in place, bound together by a call to pb.set
UnjellyableForClass, all that remains is to pass a reference to your pb.Cacheable over the wire to the
remote end. The corresponding pb.RemoteCache object will automatically be created, and the matching methods
will be used to keep the receiver-side slave object in sync with the sender-side master object.

Example

Here is a complete example, in which the MasterDuckPond is controlled by the sending side, and the SlaveDuck
Pond is a cache that tracks changes to the master:

#! /usr/bin/python

from twisted.spread import pb

class MasterDuckPond(pb.Cacheable):
def __init__(self, ducks):

self.observers = []
self.ducks = ducks

def count(self):
print "I have [%d] ducks" % len(self.ducks)

def addDuck(self, duck):
self.ducks.append(duck)
for o in self.observers: o.callRemote(’addDuck’, duck)

10this is actually a RemoteCacheObserver, but it isn’t very useful to subclass or modify, so simply treat it as a little demon that sits in your
pb.Cacheable class and helps you distribute change notifications. The only useful thing to do with it is to run its callRemote method, which
acts just like a normal pb.Referenceable’s method of the same name.

CHAPTER 5. PERSPECTIVE BROKER 117

def removeDuck(self, duck):
self.ducks.remove(duck)
for o in self.observers: o.callRemote(’removeDuck’, duck)

def getStateToCacheAndObserveFor(self, perspective, observer):
self.observers.append(observer)
you should ignore pb.Cacheable-specific state, like self.observers
return self.ducks # in this case, just a list of ducks

def stoppedObserving(self, perspective, observer):
self.observers.remove(observer)

class SlaveDuckPond(pb.RemoteCache):
This is a cache of a remote MasterDuckPond
def count(self):

return len(self.cacheducks)
def getDucks(self):

return self.cacheducks
def setCopyableState(self, state):

print " cache - sitting, er, setting ducks"
self.cacheducks = state

def observe_addDuck(self, newDuck):
print " cache - addDuck"
self.cacheducks.append(newDuck)

def observe_removeDuck(self, deadDuck):
print " cache - removeDuck"
self.cacheducks.remove(deadDuck)

pb.setUnjellyableForClass(MasterDuckPond, SlaveDuckPond)

Source listing — cache classes.py

#! /usr/bin/python

from twisted.spread import pb, jelly
from twisted.python import log
from twisted.internet import reactor
from cache_classes import MasterDuckPond

class Sender:
def __init__(self, pond):

self.pond = pond

def phase1(self, remote):
self.remote = remote
d = remote.callRemote("takePond", self.pond)
d.addCallback(self.phase2).addErrback(log.err)

def phase2(self, response):

CHAPTER 5. PERSPECTIVE BROKER 118

self.pond.addDuck("ugly duckling")
self.pond.count()
reactor.callLater(1, self.phase3)

def phase3(self):
d = self.remote.callRemote("checkDucks")
d.addCallback(self.phase4).addErrback(log.err)

def phase4(self, dummy):
self.pond.removeDuck("one duck")
self.pond.count()
self.remote.callRemote("checkDucks")
d = self.remote.callRemote("ignorePond")
d.addCallback(self.phase5)

def phase5(self, dummy):
d = self.remote.callRemote("shutdown")
d.addCallback(self.phase6)

def phase6(self, dummy):
reactor.stop()

def main():
master = MasterDuckPond(["one duck", "two duck"])
master.count()

sender = Sender(master)
deferred = pb.getObjectAt("localhost", 8800, 30)
deferred.addCallback(sender.phase1)
reactor.run()

if __name__ == ’__main__’:
main()

Source listing — cache sender.py

#! /usr/bin/python

from twisted.internet.app import Application
from twisted.internet import reactor
from twisted.spread import pb
import cache_classes

class Receiver(pb.Root):
def remote_takePond(self, pond):

self.pond = pond
print "got pond:", pond # a DuckPondCache
self.remote_checkDucks()

def remote_checkDucks(self):
print "[%d] ducks: " % self.pond.count(), self.pond.getDucks()

CHAPTER 5. PERSPECTIVE BROKER 119

def remote_ignorePond(self):
stop watching the pond
print "dropping pond"
gc causes __del__ causes ’decache’ msg causes stoppedObserving
self.pond = None

def remote_shutdown(self):
reactor.stop()

app = Application("copy_receiver")
app.listenTCP(8800, pb.BrokerFactory(Receiver()))
app.run(save=0)

Source listing — cache receiver.py

When run, this example emits the following:

% ./cache_receiver.py
cache - sitting, er, setting ducks

got pond: <cache_classes.SlaveDuckPond instance at 0x82a15e4>
[2] ducks: [’one duck’, ’two duck’]
cache - addDuck

[3] ducks: [’one duck’, ’two duck’, ’ugly duckling’]
cache - removeDuck

[2] ducks: [’two duck’, ’ugly duckling’]
dropping pond
%

% ./cache_sender.py
I have [2] ducks
I have [3] ducks
I have [2] ducks
Main loop terminated.
%

Points to notice:

• There is one Observer for each remote program that holds an active reference. Multiple references inside
the same program don’t matter: the serialization layer notices the duplicates and does the appropriate reference
counting11.

• Multiple Observers need to be kept in a list, and all of them need to be updated when something changes. By
sending the initial state at the same time as you add the observer to the list, in a single atomic action that cannot
be interrupted by a state change, you insure that you can send the same status update to all the observers.

• The observer.callRemote calls can still fail. If the remote side has disconnected very recently and
stoppedObserving has not yet been called, you may get a DeadReferenceError. It is a good idea
to add an errback to those callRemotes to throw away such an error. This is a useful idiom:

11this applies to multiple references through the same Broker. If you’ve managed to make multiple TCP connections to the same program, you
deserve whatever you get.

CHAPTER 5. PERSPECTIVE BROKER 120

observer.callRemote(’foo’, arg).addErrback(lambda f: None)

(XXX: verify that this is actually a concern)

• getStateToCacheAndObserverFormust return some object that represents the current state of the ob-
ject. This may simply be the object’s dict attribute. It is a good idea to remove the pb.Cacheable-
specific members of it before sending it to the remote end. The list of Observers, in particular, should be left
out, to avoid dizzying recursive Cacheable references. The mind boggles as to the potential consequences of
leaving in such an item.

• A perspective argument is available to getStateToCacheAndObserveFor, as well as stopped
Observing. I think the purpose of this is to allow viewer-specific changes to the way the cache is updated. If
all remote viewers are supposed to see the same data, it can be ignored.

XXX: understand, then explain use of varying cached state depending upon perspective.

More Information

• The best source for information comes from the docstrings in twisted.spread.flavors, where pb.
Cacheable is implemented.

• twisted.manhole.explorer uses Cacheable, and does some fairly interesting things with it. (XXX:
I’ve heard explorer is currently broken, it might not be a good example to recommend)

• The spread.publish module also uses Cacheable, and might be a source of further information.

5.4 Authentication with Perspective Broker

5.4.1 Motivation
In the examples shown in Using Perspective Broker (page 92) there were some problems. You had to trust the user
when they said their name was “bob”: no passwords or anything. If you wanted a direct-send one-to-one message
feature, you might have implemented it by handing a User reference directly off to another User. (so they could invoke
.remote sendMessage() on the receiving User): but that lets them do anything else to that user too, things that
should probably be restricted to the “owner” user, like .remote joinGroup() or .remote quit().

And there were probably places where the easiest implementation was to have the client send a message that
included their own name as an argument. Sending a message to the group could just be:

class Group(pb.Referenceable):

...

def remote_sendMessage(self, from_user, message):
for user in self.users:

user.callRemote("sendMessage", "[%s]: %s" % (from_user, message))

But obviously this lets users spoof each other: there’s no reason that Alice couldn’t do:

remotegroup.callRemote("sendMessage", "bob", "i like pork")

CHAPTER 5. PERSPECTIVE BROKER 121

much to the horror of Bob’s vegetarian friends.
(In general, learn to get suspicious if you see groupName or userName in the argument list of a remotely-

invokable method).
You could fix this by adding more classes (with fewer remotely-invokable methods), and making sure that the

reference you give to Alice won’t let her pretend to be anybody else. You’d probably give Alice her own object, with
her name buried inside:

class User(pb.Referenceable):
def __init__(self, name):
self.name = name

def remote_sendMessage(self, group, message):
g = findgroup(group)
for user in g.users:

user.callRemote("sendMessage", "[%s]: %s" % (self.name, message))

This improves matters because, as long as Alice only has a reference to this object and nobody else’s, she can’t
cause a different self.name to get used. Of course, you have to make sure that you don’t give her a reference to the
wrong object.

Note:
Third party references (there aren’t any)
Note that the reference that the server gives to a client is only useable by that one client: if they try

to hand it off to a third party, they’ll get an exception (XXX: which? looks like an assert in pb.py:290
RemoteReference.jellyFor). This helps somewhat: only the client you gave the reference to can cause
any damage with it. Of course, the client might be a brainless zombie, simply doing anything some
third party wants. When it’s not proxying callRemote invocations, it’s probably terrorizing the living
and searching out human brains for sustenance. In short, if you don’t trust them, don’t give them that
reference.

Also note that the design of the serialization mechanism (implemented in twisted.spread.
jelly: pb, jelly, spread.. get it? Also look for “banana” and “marmalade”. What other networking
framework can claim API names based on sandwich ingredients?) makes it impossible for the client to
obtain a reference that they weren’t explicitly given. References passed over the wire are given id numbers
and recorded in a per-connection dictionary. If you didn’t give them the reference, the id number won’t
be in the dict, and no amount of id guessing by a malicious client will give them anything else. The dict
goes away when the connection is dropped, limiting further the scope of those references.

Of course, everything you’ve ever given them over that connection can come back to you. If expect
the client to invoke your method with some object A that you sent to them earlier, and instead they send
you object B (that you also sent to them earlier), and you don’t check it somehow, then you’ve just opened
up a security hole. A better design is to keep such objects in a dictionary on the server side, and have
the client send you an index string instead. Doing it that way makes it obvious that they can send you
anything they want, and improves the chances that you’ll remember to implement the right checks.

But now she could sneak into another group. So you might have to have an object per-group-per-user:

class UserGroup(pb.Referenceable):
def __init__(self, group, user):
self.group = group
self.user = user

CHAPTER 5. PERSPECTIVE BROKER 122

def remote_sendMessage(self, message):
name = self.user.name
for user in self.group.users:

user.callRemote("sendMessage", "[%s]: %s" % (name, message))

But that means more code, and more code is bad, especially when it’s a common problem (everybody designs with
security in mind, right? Right??).

So we have a security problem. We need a way to ask for and verify a password, so we know that Bob is really
Bob and not Alice wearing her “Hi, my name is Bob” t-shirt. And it would make the code cleaner (i.e.: fewer classes)
if some methods could know reliably who is calling them.

5.4.2 A sample application
As a framework for this chapter, we’ll be referring to a hypothetical game implemented by several programs using the
Twisted framework. This game will have multiple players, where users log in using their client programs, and there is
a server, and users can do some things but not others12.

The players make moves in this game by invoking remote methods on objects that live in the server. The clients
can’t really be relied upon to tell the server who they are with each move they make: they might get it wrong, or
(horrors!) lie to mess up the other player.

Let’s simplify it to a server-based game of Go (if that can be considered simple). Go has two players, white and
black, who take turns placing stones of their own color at the intersections of a 19x19 grid. If we represent the game
and board as an object in the server called Game, then the players might interact with it using something like this:

class Game(pb.Referenceable):
def remote_getBoard(self):
return self.board # a dict, with the state of the board

def remote_move(self, playerName, x, y):
self.board[x,y] = playerName

“But Wait”, you say, yes that method takes a playerName, which means they could cheat and move for the other
player. So instead, do this:

class Game(pb.Referenceable):
def remote_getBoard(self):
return self.board # a dict, with the state of the board

def move(self, playerName, x, y):
self.board[x,y] = playerName

and move the responsibility (and capability) for calling Game.move() out to a different class. That class is a pb.
Perspective.

5.4.3 Perspectives
pb.Perspective (and some related classes: Identity, Authorizer, and Service) is a layer on top of the basic PB
system that handles username/password checking. The basic idea is that there is a separate Perspective object (probably

12There actually exists such a thing. It’s called twisted.reality, and was the whole reason Twisted was created. I haven’t played it yet: I’m too
afraid.

CHAPTER 5. PERSPECTIVE BROKER 123

a subclass you’ve created) for each user13, and only the authorized user gets a remote reference to that Perspective
object. You can store whatever permissions or capabilities the user possesses in that object, and then use them when
the user invokes a remote method. You give the user access to the Perspective object instead of the objects that do the
real work.

Your code can then look like this:

class Game:
def getBoard(self):
return self.board # a dict, with the state of the board

def move(self, playerName, x, y):
self.board[x,y] = playerName

class PlayerPerspective(pb.Perspective):
def __init__(self, playerName, game):
self.playerName = playerName
self.game = game

def perspective_move(self, x, y):
self.game.move(self.playerName, x, y)

def perspective_getBoard(self):
return self.game.getBoard()

The code on the server side creates the PlayerPerspective object, giving it the right playerName and a reference to
the Game object. The remote player doesn’t get a reference to the Game object, only their own PlayerPerspective, so
they don’t have an opportunity to lie about their name: it comes from the .playerName attribute, not an argument
of their remote method call.

Here is a brief example of using a Perspective. Most of the support code is magic for now: we’ll explain it later.

Note:
This example has more support code than you’d actually need. If you only have one Service, then

there’s probably a one-to-one relationship between your Identities and your Perspectives. If that’s the
case, you can use a utility method called Perspective.makeIdentity() instead of creating the perspectives
and identities in separate steps. This is shorter, but hides some of the details that are useful here to explain
what’s going on. Again, this will make more sense later.

#! /usr/bin/python

from twisted.spread import pb
from twisted.cred.authorizer import DefaultAuthorizer
import twisted.internet.app

class MyPerspective(pb.Perspective):
def perspective_foo(self, arg):

print "I am", self.myname, "perspective_foo(",arg,") called on", self

much of the following is magic
app = twisted.internet.app.Application("pb5server")

13Actually there is a perspective per user*service, but we’ll get into that later

CHAPTER 5. PERSPECTIVE BROKER 124

auth = DefaultAuthorizer(app)
create the service, tell it to generate MyPerspective objects when asked
s = pb.Service("myservice", app, auth)
s.perspectiveClass = MyPerspective

create a MyPerspective
p1 = s.createPerspective("perspective1")
p1.myname = "p1"
create an Identity, give it a name and password, and allow it access to
the MyPerspective we created before
i1 = auth.createIdentity("user1")
i1.setPassword("pass1")
i1.addKeyByString("myservice", "perspective1")
auth.addIdentity(i1)

start the application
app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))
app.run(save=0)

Source listing — pb5server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user1", "pass1",
"myservice", "perspective1",
30)

def1.addCallbacks(connected)
reactor.run()

def connected(perspective):
print "got perspective ref:", perspective
print "asking it to foo(12)"
perspective.callRemote("foo", 12)

main()

Source listing — pb5client.py

Note that once this example has done the method call, you’ll have to terminate both ends yourself. Also note that
the Perspective’s .attached() and .detached() methods are run when the client connects and disconnects.
The base class implementations of these methods just prints a message.

CHAPTER 5. PERSPECTIVE BROKER 125

Ok, so that wasn’t really very exciting. It doesn’t accomplish much more than the first PB example, and used a
lot more code to do it. Let’s try it again with two users this time, each with their own Perspective. We also override
.attached() and .detached(), just to see how they are called.

Note:
The Perspective object is usually expected to outlast the user’s connection to it: it is nominally

created some time before the user connects, and survives after they disconnect. .attached() and
.detached() are invoked to let the Perspective know when the user has connected and disconnected.

When the client runs pb.connect to establish the connection, they can provide it with an optional
client argument (which must be a pb.Referenceable object). If they do, then a reference to
that object will be handed to the server-side Perspective’s .attached method, in the clientref
argument.

The server-side Perspective can use it to invoke remote methods on something in the client, so that
the client doesn’t always have to drive the interaction. In a chat server, the client object would be the one
to which “display text” messages were sent. In a game, this would provide a way to tell the clients that
someone has made a move, so they can update their game boards. To actually use it, you’d probably want
to subclass Perspective and change the .attached method to stash the clientref somewhere, because the
default implementation just drops it.

.attached() also receives a reference to the Identity object that represents the user. (The user
has proved, by using a password of some sort, that they are that Identity, and then they can access
any service/perspective on the Identity’s keyring). The method can use that reference to extract more
information about the user.

In addition, .attached() has the opportunity to return a different Perspective, if it so chooses. You
could have all users initially access the same Perspective, but then as they connect (and .attached()
gets called), give them unique Perspectives based upon their individual Identities. The client will get a
reference to whatever .attached() returns, so the default case is to ’return self’.

Finally, when the client goes away (i.e., the network connection has been closed), .detached()
will be called. The Perspective can use this to mark the user as having gone away: this may mean that
outgoing messages should be queued in the Perspective until they reconnect, or callers should be given an
error message because they messages cannot be delivered, etc. It can also be used to terminate or suspend
any sessions the user was participating in. detached is called with the same ’clientref’ and Identity
objects that were given to the original ’attached’ call. It will be invoked on the Perspective object that was
returned by .attached().

#! /usr/bin/python

from twisted.spread import pb
from twisted.cred.authorizer import DefaultAuthorizer
import twisted.internet.app

class MyPerspective(pb.Perspective):
def attached(self, clientref, identity):

print "client attached! they are:", identity
return self

def detached(self, ref, identity):
print "client detached! they were:", identity

CHAPTER 5. PERSPECTIVE BROKER 126

def perspective_foo(self, arg):
print "I am", self.myname, "perspective_foo(",arg,") called on", self

much of the following is magic
app = twisted.internet.app.Application("pb6server")
auth = DefaultAuthorizer(app)
create the service, tell it to generate MyPerspective objects when asked
s = pb.Service("myservice", app, auth)
s.perspectiveClass = MyPerspective

create one MyPerspective
p1 = s.createPerspective("perspective1")
p1.myname = "p1"
create an Identity, give it a name and password, and allow it access to
the MyPerspective we created before
i1 = auth.createIdentity("user1")
i1.setPassword("pass1")
i1.addKeyByString("myservice", "perspective1")
auth.addIdentity(i1)

create another MyPerspective
p2 = s.createPerspective("perspective2")
p2.myname = "p2"
i2 = auth.createIdentity("user2")
i2.setPassword("pass2")
i2.addKeyByString("myservice", "perspective2")
auth.addIdentity(i2)

start the application
app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))
app.run(save=0)

Source listing — pb6server.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user1", "pass1",
"myservice", "perspective1",
30)

def1.addCallbacks(connected)

CHAPTER 5. PERSPECTIVE BROKER 127

reactor.run()

def connected(perspective):
print "got perspective1 ref:", perspective
print "asking it to foo(13)"
perspective.callRemote("foo", 13)

main()

Source listing — pb6client1.py

#! /usr/bin/python

from twisted.spread import pb
from twisted.internet import reactor

def main():
def1 = pb.connect("localhost", 8800,

"user2", "pass2",
"myservice", "perspective2",
30)

def1.addCallbacks(connected)
reactor.run()

def connected(perspective):
print "got perspective2 ref:", perspective
print "asking it to foo(14)"
perspective.callRemote("foo", 14)

main()

Source listing — pb6client2.py

While pb6server.py is running, try starting pb6client1, then pb6client2. Compare the argument passed by the
.callRemote() in each client. You can see how each client logs into a different Perspective.

5.4.4 Class Overview
Now that we’ve seen some of the motivation behind the Perspective class, let’s start to de-mystify some of the parts
labeled “magic” in pb6server.py. Here are the major classes involved:

• Application: twisted/internet/app.py

• Service: twisted/cred/service.py

• Authorizer: twisted/cred/authorizer.py

• Identity: twisted/cred/identity.py

CHAPTER 5. PERSPECTIVE BROKER 128

• Perspective: twisted/cred/pb.py

You’ve already seen Application. It holds the program-wide settings, like which uid/gid it should run under,
and contains a list of ports that it should listen on (with a Factory for each one to create Protocol objects). When used
for PB, we put a pb.BrokerFactory on the port. The Application also holds a list of Services.

A Service is, well, a service. A web server would be a Service, as would a chat server, or any other kind
of server you might choose to run. What’s the difference between a Service and an Application? You can
have multiple Services in a single Application: perhaps both a web-based chat service and an IM server in
the same program, that let you exchange messages between the two. Or your program might provide different kinds
of interfaces to different classes of users: administrators could get one Service, while mere end-users get a less-
powerful Service.

Note:
Note that the Service is a server of some sort, but that doesn’t mean there’s a one-to-one relationship

between the Service and the TCP port that’s being listened to. In theory, several different Services
can hang off the same TCP port. Look at the MultiService class for details.

The Service is reponsible for providing Perspective objects. More on that later.
The Authorizer is a class that provides Identity objects. The abstract base class is twisted.cred.

authorizer.Authorizer, and for simple purposes you can just use DefaultAuthorizer, which is a sub-
class that stores pre-generated Identities in a simple dict (indexed by username). The Authorizer’s purpose in
life is to implement the .getIdentityRequest()method, which takes a user name and (eventually) returns the
corresponding Identity object.

Each Identity object represents a single user, with a username and a password of some sort. Its job is to talk
to the as-yet-anonymous remote user and verify that they really are who they claim to be. The default twisted.
cred.authorizer.Identity class implements MD5-hashed challenge-response password authorization, much
like the HTTP MD5-Authentication method: the server sends a random challenge string, the client concatenates a
hash of their password with the challenge string, and sends back a hash of the result. At this point the client is said
to be “authorized” for access to that Identity, and they are given a remote reference to the Identity (actually a
wrapper around it), giving them all the privileges of that Identity.

Those privileges are limited to requesting Perspectives. The Identity object also has a “keyring”, which
is a list of (serviceName, perspectiveName) pairs that the corresponding authorized user is allowed to access. Once
the user has been authenticated, the Identity’s job is to implement .requestPerspectiveForKey(), which
it does by verifying the “key” exists on the keyring, then asking the matching Service to do .getPerspective
ForIdentity().

Finally, the Perspective is the subclass of pb.Perspective that implements whatever perspective * meth-
ods you wish to expose to an authenticated remote user. It also implements .attached() and .detached(),
which are run when the user connects (actually when they finish the authentication sequence) or disconnects. Each
Perspective has a name, which is scoped to the Service which owns the Perspective.

5.4.5 Class Responsibilities
Now that we’ve gone over the classes and objects involved, let’s look at the specific responsibilities of each. Most of
these classes are on the hook to implement just one or two particular methods, and the rest of the class is just support
code (or the main method has been broken up for ease of subclassing). This section indicates what those main methods
are and when they get called.

CHAPTER 5. PERSPECTIVE BROKER 129

Authorizer

The Authorizer has to provide Identity objects (requested by name) by implementing .getIdentity
Request(). The DefaultAuthorizer class just looks up the name in a dict called self.identities,
so when you use it, you have to make the Identities ahead of time (using i = auth.createIdentity()) and
store them in that dict (by handing them to auth.addIdentity(i)).

However, you can make a subclass of Authorizer with a .getIdentityRequest method that behaves
differently: your version could look in /etc/passwd, or do an SQL database lookup14, or create new Identities for
anyone that asks (with a really secret password like ’1234’ that the user will probably never change, even if you ask
them to). The Identities could be created by your server at startup time and stored in a dict, or they could be pickled
and stored in a file until needed (in which case .getIdentityRequest() would use the username to find a file,
unpickle the contents, and return the resulting Identity object), or created brand-new based upon whatever data
you want. Any function that returns a Deferred (that will eventually get called back with the Identity object) can
be used here.

Note:
For static Identities that are available right away, the Deferred’s callback() method is called right

away. This is why the interface of .getIdentityRequest() specifies that its Deferred is returned
unarmed, so that the caller has a chance to actually add a callback to it before the callback gets run. (XXX:
check, I think armed/unarmed is an outdated concept)

Identity

The Identity object thus returned has two responsibilities. The first is to authenticate the user, because so far they
are unverified: they have claimed to be somebody (by giving a username to the Authorizer), but have not yet proved
that claim. It does this by implementing .verifyPassword, which is called by IdentityWrapper (described later)
as part of the challenge-response sequence. If the password is valid, .verifyPassword should return a Deferred
and run its callback. If the password is wrong, the Deferred should have the error-back run instead.

The second responsibility is to provide Perspective objects to users who are allowed to access them. The
authenticated user gives a service name and a perspective name, and .requestPerspectiveForKey() is in-
voked to retrieve the given Perspective. The Identity is the one who decides which services/perspectives the
user is allowed to access. Unless you override it in a subclass, the default implementation uses a simple dict called
.keyring, which has keys that are (servicename, perspectivename) pairs. If the requested name pair is in the keyring,
access is allowed, and the Identity will proceed to ask the Service to give back the specified Perspective
to the user. .requestPerspectiveForKey() is required to return a Deferred, which will eventually be called
back with a Perspective object, or error-backed with a Failure object if they were not allowed access.

XXX: explain perspective names being scoped to services better
You could subclass Identity to change the behavior of either of these, but chances are you won’t bother. The

only reason to change .verifyPassword() would be to replace it with some kind of public-key verification
scheme, but that would require changes to pb.IdentityWrapper too, as well as significant changes on the client
side. Any changes you might want to make to .requestPerspectiveForKey() are probably more appropriate
to put in the Service’s .getPerspectiveForIdentitymethod instead. The Identity simply passes all requests
for Perspectives off to the Service.

The default Identity objects are created with a username and password, and a “keyring” of valid ser-
vice/perspective name pairs. They are children of an Authorizer object. The best way to create them is to have the

14See twisted.enterprise.dbcred for a module that does exactly that.

CHAPTER 5. PERSPECTIVE BROKER 130

Authorizer do it for you, then fill in the details, by doing the following:

i = auth.createIdentity("username")
i.setPassword("password")
i.addKeyByString("service", "perspective")
auth.addIdentity(i)

Service

The Service object’s job is to provide Perspective instances, by implementing .getPerspectiveFor
Identity(). This function takes a Perspective name, and is expected to return a Deferred which will (eventu-
ally) be called back with an instance of Perspective (or a subclass).

The default implementation (in twisted.spread.pb.Service) retrieves static pre-generated
Perspectives from a dict (indexed by perspective name), much like DefaultAuthorizer does with Identi-
ties. And like Authorizer, it is very useful to subclass pb.Service to change the way .getPerspective
ForIdentity()works: to create Perspectives out of persistent data or database lookups, to set extra attributes
in the Perspective, etc.

When using the default implementation, you have to create the Perspectives at startup time. Each Service
object has an attribute named .perspectiveClass, which helps it to create the Perspective objects for you.
You do this by running p = svc.createPerspective("perspective name").

You should use .createPerspective() rather than running the constructor of your Perspective-subclass by
hand, because the Perspective object needs a pointer to its parent Service object, and the Service needs to have
a list of all the Perspectives that it contains.

5.4.6 How that example worked
Ok, so that’s what everything is supposed to do. Now you can walk through the previous example and see what
was going on: we created a subclass called MyPerspective, made a DefaultAuthorizer and added it to the
Application, created a Service and told it to make MyPerspectives, used .createPerspective() to
build a few, for each one we made an Identity (with a username and password), and allowed that Identity to
access a single MyPerspective by adding it to the keyring. We added the Identity objects to the Authorizer,
and then glued the authorizer to the pb.BrokerFactory.

How did that last bit of magic glue work? I won’t tell you here, because it isn’t very useful to override it, but you
effectively hang an Authorizer off of a TCP port. The combination of the object and methods exported by the pb.
AuthRoot object works together with the code inside the pb.connect() function to implement both sides of the
challenge-response sequence. When you (as the client) use pb.connect() to get to a given host/port, you end up
talking to a single Authorizer. The username/password you give get matched against the Identities provided
by that authorizer, and then the servicename/perspectivename you give are matched against the ones authorized by the
Identity (in its .keyring attribute). You eventually get back a remote reference to a Perspective provided
by the Service that you named.

Note:
Here is how the magic glue code works:

app.listenTCP(8800, pb.BrokerFactory(pb.AuthRoot(auth)))

pb.AuthRoot() provides objects that are subclassed from pb.Root, so as we saw in the first
example, they can be served up by pb.BrokerFactory(). AuthRoot happens to use the .root

CHAPTER 5. PERSPECTIVE BROKER 131

Object hook described earlier to serve up an AuthServ object, which wraps the Authorizer and
offers a method called .remote username, which is called by the client to declare which Identity
it claims to be. That method starts the challenge-response sequence.

5.4.7 Code Walkthrough: pb.connect()
So, now that you’ve seen the complete sequence, it’s time for a code walkthrough. This will give you a chance to see
the places where you might write subclasses to implement different behaviors. We will look at what happens when
pb6client1.py meets pb6server.py. We tune in just as the client has run the pb.connect() call.

The client-side code can be summarized by the following sequence of function calls, all implemented in
twisted/spread/pb.py . pb.connect() calls getObjectAt() directly, after that each step is executed as a call-
back when the previous step completes.

getObjectAt(host,port,timeout)
logIn(): authServRef.callRemote(’username’, username)
_cbLogInRespond(): challenger.callRemote(’respond’, f[challenge,password])
_cbLogInResponded(): identity.callRemote(’attach’, servicename,

perspectivename, client)
usercallback(perspective)

The client does getObjectAt() to connect to the given host and port, and retrieve the object named root.
On the server side, the BrokerFactory accepts the connection, asks the pb.AuthRoot object for its .root
Object(), getting an AuthServ object (containing both the authorizer and the Broker protocol object). It gives
a remote reference to that AuthServ out to the client.

Now the client invokes the ’.remote username’ method on that AuthServ. The AuthServ asks the
Authorizer to .getIdentityRequest(): this retrieves (or creates) the Identity. When that finishes,
it asks the Identity to create a random challenge (usually just a random string). The client is given back both the
challenge and a reference to a new AuthChallenger object which will only accept a response that matches that
exact challenge.

The client does its part of the MD5 challenge-response protocol and sends the response to the Auth
Challenger’s .remote response() method. The AuthChallenger verifies the response: if it is valid
then it gives back a reference to an IdentityWrapper, which contains an internal reference to the Identity that
we now know matches the user at the other end of the connection.

The client then invokes the .remote attach method on that IdentityWrapper, passing in a service-
Name, perspectiveName, and remoteRef. The wrapper asks the Identity to get a perspective using identity.
requestPerspectiveForKey, which does the “is this user allowed to get this service/perspective” check by
looking at the tuples on its .keyring, and if that is allowed then it gets the Service (by giving serviceName to
the authorizer), then asks the Service to provide the perspective (with svc.getPerspectiveForIdentity).
The default Service will ignore the identity object and just look for Perspectives by perspectiveName. The
Service looks up or creates the Perspective and returns it. The .remote attach method runs the Per-
spective’s .attached method (although there are some intermediate steps, in IdentityWrapper. attached,
to make sure .detached will eventually be run, and the Perspective’s .brokerAttached method is executed
to give it a chance to return some other Perspective instead). Finally a remote reference to the Perspective is
returned to the client.

The client gives the Perspective reference to the callback that was attached to the Deferred that pb.
connect() returned, which brings us back up to the code visible in pb6client1.py.

CHAPTER 5. PERSPECTIVE BROKER 132

5.4.8 A Larger Example
Now it’s time to look more closely at the Go server described before.

To simplify the example, we will build a server that handles just a single game. There are a variety of players who
can participate in the game, named Alice, Bob, etc (the usual suspects). Two of them log in, choose sides, and begin
to make moves.

We assume that the rules of the game are encapsulated into a GoGame object, so we can focus on the code that
handles the remote players.

XXX: finish this section
That’s the end of the tour. If you have any questions, the folks at the welcome office will be more than happy to

help. Don’t forget to stop at the gift store on your way out, and have a really nice day. Buh-bye now!

Chapter 6

Web Applications

6.1 Webizing your application with DOMTemplate

6.1.1 Intro
Most templating systems provide commands that you embed in the HTML to repeat elements or include fragments
from other files. This works fairly well for simple constructs; however, as soon as the programmer wants to make the
logic even slightly more complicated, the templating system must be bent in ways it was never meant to be used.

The theory behind DOMTemplate is that Python code, rather than special syntax in the HTML template, should
be used to manipulate the structure of the HTML. DOMTemplate uses the Document Object Model1 (DOM), a W32

standard tree-based representation of an HTML document. The DOM provides an API that allows you to traverse
nodes in the tree, examine their attributes, move, add, and delete them. For more information on using DOM in
Python, see The xml.dom module documentation3.

6.1.2 Before we begin
You’ll need to start a plain Twisted Web server.

mktap web --path ˜/public_html
twistd -f web.tap

For more detailed information on this, see the guide to Installing and Using Twisted.Web (page 22).
Once you do this you should be able to throw any files in /̃public html, and they’ll be served on localhost:8080.

Twisted Web also supports a number of special script types; the one we’ll be using here is an .rpy, or Resource Script
(page 22).

A Resource Script (page 22) is simply a python file ending with the extension .rpy, which is required to create
an instance of a (subclass of a) twisted.web.resource.Resource. The Resource subclass we’ll be using
in this example is, of course, DOMTemplate.

Make sure the TwistedQuotes directory is on your PYTHONPATH, put webquotes.rpy and WebQuotes.
html in your /̃public html directory, and you are ready to go.

1http://www.w3.org/DOM/
2http://www.w3.org/
3http://python.org/doc/lib/module-xml.dom.html

133

CHAPTER 6. WEB APPLICATIONS 134

6.1.3 Getting To It
There are three files involved in this example; webquoteresource.py, WebQuotes.html, and webquotes.
rpy. webquoteresource.py is a normal python module and contains the class definition which will be used,
a DOMTemplate subclass. WebQuotes.html is placed in the web directory and is looked up at runtime by
the DOMTemplate machinery. It is converted into a DOM tree which is iterated during page rendering. Finally,
webquotes.rpy is placed in the web directory; each time the URL is visited, the file is executed; it imports
webquoteresource.QuoteResource and instantiates it. This instance is asked to render the page.

webquoteresource.py

A DOMTemplate subclass must do two things: specify a template, and provide methods to handle specific nodes
in the template. The first simply requires either a template attribute, which should be a string, or a template
File attribute, which should be a file name, specifying the XHTML template. To accomplish the second, we define
methods with the prefix factory in our subclass. When the template is rendered, DOMTemplate will look for the
view attribute on any HTML node. If one is found, the corresponding factory method will be called to handle the
node.

from twisted.web.woven import template
from twisted.web import domhelpers #helpers for munging the DOM

from TwistedQuotes import quoters

class QuoteResource(template.DOMTemplate):
"""I am a DOMTemplate that displays a fancy quote page."""

The template; this must be valid XML (parsable by Python’s DOM
implementation)
templateFile = "WebQuotes.xhtml"

def __init__(self, filenames):
template.DOMTemplate.__init__(self)
self.quoter = quoters.FortuneQuoter(filenames)

def factory_getQuote(self, request, node):
"""
Return a (hopefully amusing) quote.
"""
domhelpers.clearNode(node)
node.appendChild(self.d.createTextNode(self.quoter.getQuote()))
return node

def factory_getTitle(self, request, node):
"""Quotes Galore!"""
domhelpers.clearNode(node)
node.appendChild(self.d.createTextNode("Quotes Galore!"))

CHAPTER 6. WEB APPLICATIONS 135

return node

Listing 1: webquoteresource.py: Twisted Quotes Web Resource module — webquoteresource.py

WebQuotes.html

In our example template, we insert a view attribute onto the <title> node with the value ’getTitle’. We also
insert a view attribute on a <h1> node with the value ’getTitle’; this shows the ability of DOMTemplate to
reuse functionality while applying formatting defined by the template to the output. We also insert a view attribute
onto a <pre> node with the value ’getQuote’. This is where the real action will take place.

When the DOM is iterated and nodes with view attributes are found, DOMTemplate will look in the instance’s
namespace for a method with the corresponding name, prefixed by factory .

<html>
<head>

<title view="getTitle">
Title will go here

</title>
<style>

.quote {color: green;}
</style>

</head>

<body>

<h1 view="getTitle">
Title will go here

</h1>

<pre class="quote" view="getQuote">
Quote will go here.

</pre>

</body>
</html>

Listing 2: WebQuotes.html: Twisted Quotes Web Template — WebQuotes.xhtml

webquote.rpy

Finally, we need an .rpy file in the web directory that twisted can find and execute. This is simply a matter of
importing our module, instantiating our class, and assigning the instance to a variable named resource. Twisted
will discover this instance and call render on it, causing the DOMTemplate to be rendered.

-*- Python -*-

from TwistedQuotes import webquoteresource

CHAPTER 6. WEB APPLICATIONS 136

#__file__ is defined to be the name of this file; this is to
#get the sibling file "quotes.txt" which should be in the same directory
import os
quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")

#ResourceScript requires us to define ’resource’.
#This resource is used to render the page.
resource = webquoteresource.QuoteResource([quotefile])

Listing 3: webquote.rpy: Twisted Quotes Web Application — webquote.rpy

See it in action!4

6.2 Developing Componentized Web Applications using Woven, the Web
Object Visualization Environment

6.2.1 Introduction
DOMTemplate solves the problem of separating logic from presentation, and allows the template manipulation logic
to be expressed in Python code form using the DOM API. However, the DOM API is too low level and it quickly
becomes tedious to use to build complicated HTML structures.

Twisted’s solution is to provide a Model-View-Controller based component framework, which allows you to con-
struct complex HTML “Views” out of many small interacting components, or woven.widgets.

Instead of manipulating DOM objects which represent low-level HTML Nodes, you construct and compose the
model data that your page will be based on, and specify views which will be responsible for formatting the model data
as HTML. Using widgets defined in twisted.web.woven.widgets, and higher-level widgets that you define yourself
for an application-specific purpose, python data structures such as strings, integers, lists, dicts, and custom subclasses
of woven.model.Model, can be adapted implicitly or explicitly to subclasses of woven.view.View (such as
subclasses of woven.widgets.Widget) for display in HTML.

6.2.2 Model-View-Controller
Model View Controller is a development strategy which involves breaking up program logic into three separate do-
mains: Model objects, whose job it is to contain/produce data; View objects, whose job it is to present this data to the
user; and Controller objects, whose job it is to handle events such as “user input from a form” and “fetch URL” and
update the model with the user’s desired changes. When the controller finishes updating the model, it tells the model
to notify all views that the model has changed so they may rerender themselves accordingly.

Woven’s implementation of MVC uses twisted.python.components, the interface and component reg-
istry, to loosely couple the interacting objects.

4http://twistedmatrix.com/documents/howto/listings/TwistedQuotes/webquote.rpy

CHAPTER 6. WEB APPLICATIONS 137

6.2.3 Hello World with Page
Let’s start with the canonical Hello World example. We will use an instance of woven.page.Page as our
IResource implementor. IResource describes the interface that objects are required to implement in order to
publish themselves over the web in twisted.web. We will be instanciating a Page instance in an .rpy script. An rpy is
like a CGI script – each time you visit the script, it is executed. However, an rpy script is merely responsible for instan-
ciating a Resource object to handle the request and assigning it to a variable named “resource”. This Resource
object will then be called upon to render the request.

from twisted.web.woven import page

resource = page.Page("Hello, world!", templateFile = "HelloWorld.html")

Listing 1: HelloWorld.rpy: Hello World Resource Script — HelloWorld.rpy

Next, let’s take a look at the HTML template woven will look up to render this request into HTML. Woven defines
three special attributes, model=, view=, and controller=, which it uses to decide which python code to invoke
while rendering the page.

<html>
<head>

<title model=".">Title will go here.</title>
</head>
<body>

<h3 model=".">Content will go here.</h3>
</body>

</html>

Listing 2: HelloWorld.xhtml: Hello World Web Template — HelloWorld.html

In the template, we have simply indicated that woven should replace certain nodes with the results of rendering a
widget on the current model. The syntax model="." indicates that woven should use the current model no matter
what its name, similar to filesystem syntax. Since we aren’t explicitly stating which view widget should render the
model with a view= attribute, an IView adapter is looked up from the global registry implicitly. In this case, the
model is a string, so an instance of widgets.Text is constructed which converts the python string into a DOM text
node and inserts it into the DOM.

Next, let’s look at an example of rendering a page with a more complicated model. We’re going to make several
pieces of data available to the template under different names. We will refer to these pieces of data as “Submodels”,
since they are contained in a Model instance.

from twisted.web.woven import model, page

The AttributeModel sets submodels as attributes of itself.
May not be secure theoretically, but we’re using it for simple purposes here.
model = model.AttributeModel()

model.setSubmodel("greeting", "Hello, world!")
model.setSubmodel("anInt", 5465465)

CHAPTER 6. WEB APPLICATIONS 138

model.setSubmodel("aList", [’fred’, ’bob’, ’alice’, ’joe’])
model.setSubmodel("aDict", {’some’: ’stuff’, ’goes’: ’here’})

resource = page.Page(model, templateFile="HelloWorld2.html")

Listing 3: HelloWorld2.rpy: Setting up submodels with a resource script — HelloWorld2.rpy

We need a place to gather all the Model data together so the View has access to it. woven.model.Attribute
Model is a good container to place other models in, and to do so we simply call setSubmodel. Notice that setSubmodel
takes a key and a value, the name the submodel will be available as to the template, and the actual submodel data.

Woven comes with various widgets which are registered as IView implementors for the basic python types
(strings, lists, and dictionaries) which are very useful. Most of the time, you can simply prepare the data for ren-
dering by converting it into strings and lists using an rpy or custom Model subclass, and then referencing these strings
and lists in your template.

This time, in our HTML template, we’re going to have to be a little more explicit when specifying view widgets
to render the model data. It’s generally a good idea to always explicitly state the name of the view widget you want
to handle a node; but it’s convenient that you don’t have to, for example if you’re rendering a custom model/view pair
where it doesn’t make sense to use any other view widgets to render a given model instance.

<html>
<head>

<title model="greeting" view="Text">Title here</title>
</head>
<body>

<h3 model="greeting" view="Text">Greeting here.</h3>

You are visitor 0! Not really,
though.

<ol model="aList" view="List">
<li listItemOf="aList" view="Text">List item here.

<div listItemOf="aList" view="Text" style="background-color: blue">

List item here.
</div>
<div listItemOf="aList" view="Text" style="background-color: green">

List item here.
</div>

<p>

<div keyedListItemOf="aDict" view="Text"
style="background-color: blue">List item here.</div>

<div keyedListItemOf="aDict" view="Text"

CHAPTER 6. WEB APPLICATIONS 139

style="background-color: green">List item here.</div>

</p>

<p model="aList" view="None">
<div model="3">Last item</div>
<div model="0">First item</div>

</p>

<p model="aDict" view="None">
<div model="some">A dict value here</div>
<div model="goes">Another dict value here</div>

</p>

</body>
</html>

Listing 4: HelloWorld2.html: Explicitly stating view widget names in the template — HelloWorld2.html

As you can see from the template, the List widget requires specially tagged nodes inside of it’s node in order to
operate properly. These nodes are called “pattern” nodes, and each widget can choose to require certain patterns, or
look for certain optional patterns, during the course of rendering itself. In the list widget’s case, it looks for the pattern
“listItem” and makes one copy of it for each element in the list it is rendering. There are two ways to specify a patten
node:

• By putting a pattern="patternName" attribute on a node

• By putting a patternName + ’Of’="modelName" attribute on a node

This is easier to show by example than to explain; look at the template for an example of the second usage.
Look at the documentation for each individual widget to see what patterns a Widget supports. The List widget

is particularly useful; it supports the following patterns:

• listItem

• listHeader

• listFooter

• emptyList

Notice a few things about this template. First, we are explicitly stating the view widget we wish to render each
node with a view= attribute. All these view widgets are defined in woven/widgets.py, the default woven widgets
library. You can also create your own widget libraries for your views, as well as defining subwidget names on more
complicated views that are only valid within that views’s HTML node. Procedures for doing so will be described in
later HOWTOs.

You now know how to create a woven HTML template, and how to populate this template with data in the form
of simple python data types. However, often you will wish to render a dynamic data source, such as a database, or
a complex data source such as a python object. One way to render this data over the web is to create a class which
implements IModel, the interface woven uses to expose data to view widgets.

CHAPTER 6. WEB APPLICATIONS 140

6.2.4 Implementing IModel
The IModel interface is documented in twisted.web.woven.interfaces. It describes the interfaces Mod-
els must implement in order to play well with the rest of the woven MVC framework. If you are inheriting from
twisted.web.woven.model.Model, most of these interfaces will be implemented for you. The interfaces that
we will be most interested in implementing are those that are designed to be overridden for customization, getData
and setData.

wovenquotes

from twisted.web.woven import model, input
from TwistedQuotes import quoters

class MQuote(model.Model):
"""A class which implements IModel for a FortuneQuoter instance for a given
filename.
"""
def __init__(self, filename):

model.Model.__init__(self)
self._filename = filename
self._quoter = quoters.FortuneQuoter([filename])

def getData(self):
"""Get a random quote from the quotefile.
"""
return self._quoter.getQuote()

def setData(self, data):
"""Add a new quote to the quotefile.
"""
file = open(self._filename, ’a’)
file.write(’\n%\n’ + data)

Listing 5: wovenquotes.py: Implementing IModel to provide custom Model behavior — wovenquotes.py

We have created a simple Model which wraps a quoter that was created in a previous HOWTO. The constructor
stores the filename and creates a new FortuneQuoter instance.

Implementing getData is as simple as delegating to our FortuneQuoter instance. getQuote returns a string. In
the template, we will specify that the Text widget should render the data returned by the quote model, so the quote
shows up in the template. But first, we need to get an instance of MQuote into the model namespace, using an rpy:

-*- Python -*-

from twisted.web.woven import model, page
from TwistedQuotes import wovenquotes

CHAPTER 6. WEB APPLICATIONS 141

#__file__ is defined to be the name of this file; this is to
#get the sibling file "quotes.txt" which should be in the same directory
import os
quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")

ResourceScript requires us to define ’resource’. This resource is used
to render the page.

We’re passing a dictionary of model data the template can render.
A static title and an instance of our custom Model subclass MQuote.

model = {’quote’: wovenquotes.MQuote(quotefile),
’title’: "Woven Quotes!"}

resource = page.Page(model, templateFile="WovenQuotes.xhtml")

Listing 6: wovenquotes.rpy: Tying together a custom Model subclass and an html template with an rpy — wovenquotes.rpy

This time, instead of using an instance of AttributeModel as our main model namespace, we have chosen to
simply use a dictionary. Since a dictionary doesn’t implement IModel, an attribute lookup occurs which wraps the
dictionary in an instance of DictionaryModel, which does implement IModel. Then all of the dictionary keys
will be available as submodel names.

<html>
<head>

<title model="title">
Quotes Galore!

</title>
<style>

.quote {color: green;}
</style>

</head>

<body>

<h1 model="title">
Quotes Galore!

</h1>

<pre view="Text" model="quote">
Quote will go here.

</pre>

<form action="">
<input type="text" name="quote" model="quote"

controller="Anything" />

CHAPTER 6. WEB APPLICATIONS 142

<input type="submit" />
</form>
Refresh

</body>
</html>

Listing 7: WovenQuotes.xhtml: WovenQuotes Template — WovenQuotes.xhtml

Woven templates are designed to minimize the amount of logic contained in the HTML template. A woven
template is a collection of HTML nodes that are tagged with various strings which woven uses to locate python
components that are then responsible for producing the final output. In this case, we joined the output of our Model
subclass’ getData (a string) with the Text widget (which knows how to render strings into DOM).

The same theory is used for input handling by Controllers. In the template, we have placed the following
input node:

<input type="text" name="quote" model="quote" controller="Anything" />

When woven encounters this node, it will look up the submodel name “quote”, and will get an instance of MQuote.
It will then look up the controller name “Anything”. Anything is an InputHandler (a specialized type of
controller designed to handle web request input) defined in twisted.web.woven.input. Similarly to woven.
widgets, woven.input is used as a default controller namespace when searching for controller names.

The AnythingInputHandler looks in the request arguments for data with the same name as its model name.
In this case, the model name is “quote”, and the input node also has the name “quote”. When the form is submitted,
the value of the text field will be available in the request arguments as “quote”, and the AnythingInputHandler
will find it. The AnythingInputHandler then immediately calls model.setData(value) since it does no
input validation.

Under construction.

Next up: Implementing custom view logic with wvupdate, and creating and using reusable Widget and Input
Handler subclasses with wvfactory and wcfactory.

6.3 Introducing Twisted Web Widgets
Note:
twisted.web.widgets is being gradually deprecated in favour of Woven (page 136). See the

module docstring for details.

6.3.1 Introduction
This is more of a simple description of all the classes, plus the common pitfalls of coding in Web Widgets. Oh well.

6.3.2 Example Code
Chris Armstrong has made some example (contrived) Widgets code available, at
http://twistedmatrix.com/users/carmstro.twistd/files/Example.tar.gz. Unpack it into your /̃TwistedPlugins / di-
rectory and run twistd -g Example somewhere to start the server on localhost:8080. Please read the code

CHAPTER 6. WEB APPLICATIONS 143

(comments) before getting confused about the odd behavior of the example server – note that you are supposed to get
a No Resource error on the root URL (http://localhost:8080/) when you first load it up; the code explains this.

6.3.3 The Diagram

twisted.web.widgets

Gadget

Widget WidgetGadget

(more widgets)

Gadget.pageFactory

6.3.4 The Classes
Gadget

A collection of widgets, like a “directory” of HTML files. You add widgets to it with self.putWidget("name",
WidgetInstance()). This widget will be rendered inside the Gadget-local page. Also, if you make a Gadget
that is also a subclass of “Widget”, then whenever the “index” (http://foo.com/foo/, “foo” being the Gadget/Widget
resource) is requested, the object will be rendered as a Widget inside of the Gadget-local page factory. The Gadget-
local page factory is the ’pageFactory’ attribute of the gadget, which should be a class that takes a widget in it’s
constructor, and displays that Widget in some form. So in your init method for your Gadget subclass, do self.
pageFactory = SomeWidgetPageSubclass (see “WidgetPage” below) (note that it is not an instance, but
the actual class object).

Widget

A Widget is simply something that is renderable, through its display() method. This method is expected to return
a list of HTML strings. (it can also contain instances of defer.Deferred – but this is another story).

Presentation

This is a special Widget that already has a display() method, which renders some objects through a template. You over-
ride the special ’template’ variable, which is a string with interpolated python expressions. It should look something
like:

CHAPTER 6. WEB APPLICATIONS 144

template = ’’’\
<html>
<head><title>%%%%self.title%%%%</title></head>
<body>%%%%self.getContent(request)%%%%
</body></html>

’’’

As you can see, Python expressions are denoted with surrounding sets of 4 %s. The expressions are evaluated in a
special namespace with only ’self’ and ’request’ in it.

WidgetPage

A WidgetPage is a special Page/Presentation combination that allows you to pass a Widget object to its constructor.
The most common use of this class is for subclassing; you should have a subclass that defines a custom ’template’
attribute. WidgetPage stores the widget you pass to it in it’s ’widget’ attribute, so remember that whenever you’re
making a customized template, use %%%%self.widget%%%% to access it (see “Common Pitfalls: WidgetPage”
below).

6.3.5 Common Pitfalls
WidgetPage

If you have a subclass of widgets.WidgetPage , make sure your template accesses the widget it’s displaying with
the ’self.widget’ object. For example, if you want to get the title from the current widget you’re displaying:

template = ’’’\
<html>
<head><title>%%%%self.widget.title%%%%</title>
</head></html>
’’’

instead of:

template = ’’’\
<html>
<head><title>%%%%title%%%%</title></head>
</html>
’’’

Adding Widgets to a Gadget

I had some code like this in one of my Gadgets: self.putWidget("Foo", widgets.TitleBox(My
Widget())). Later whenever trying to access this widget I got this traceback (word wrapped for readability):

Traceback evaluating code in twisted.words.webwords.Page:Traceback
(most recent call last):

File "/usr/lib/python2.1/site-packages/twisted/web/widgets.py",
line 86, in display

CHAPTER 6. WEB APPLICATIONS 145

x = eval(elem, namespace, namespace)
File "<string>", line 0, in ?

AttributeError: TitleBox instance has no attribute ’getHeader’

Now remember, widgets that you add to a gadget with putWidget are rendered with self.pageFactory like so:
self.pageFactory(theChildWidget). The problem is, theChildWidget in this case was actually TitleBox!
and of course, TitleBox doesn’t follow our template’s protocol of having a ’getHeader’ method. So, the lesson is:
do not wrap your real widgets with other widgets when adding to a Gadget: do formatting either in a) the template or
b) the widget’s display() method.

Return values of display()

If you ever get this traceback (word wrapped for readability):

web.Server Traceback

Traceback (most recent call last):
File "/home/punck/cvs/Twisted/twisted/web/server.py", line 215, in process
body = resrc.render(self)

File "/usr/lib/python2.1/site-packages/twisted/web/widgets.py", line 408,
in render
displayed = self.display(request)

File "/usr/lib/python2.1/site-packages/twisted/web/widgets.py", line 97,
in display
tm.extend(val)

AttributeError: TitleBox instance has no attribute ’__len__’

It’s because you tried to put a widget in the list that display() returns! For now, just tack on
.display(request) to all the widgets you want to return in that list.

6.4 Light Weight Templating With Resource Templates

6.4.1 Overview
While Twisted supports solution like Woven (page 136) for high-content sophisticated templating needs, sometimes
one needs a less file-heavy system which lets one directly write HTML. While ResourceScripts are available, they
have a high overhead of coding, needing some boring string arithmetic. ResourceTemplates fill the space between
Woven and ResourceScript using Quixote’s PTL (Python Templating Language).

ResourceTemplates need Quixote installed. In Debian5, that means using Python 2.2 and installing the quixote
package (apt-get install quixote). Other operating systems require other ways to install quixote, or it can
be done manually.

6.4.2 Configuring Twisted.Web
The easiest way to get Twisted.Web to support ResourceTemplates is to bind them to some extension using the web
tap’s --processor flag. Here is an example:

5http://www.debian.org

CHAPTER 6. WEB APPLICATIONS 146

% mktap web --path=/var/www \
--processor=.rtl=twisted.web.script.ResourceTemplate

The above command line binds the rtl extension to use the ResourceTemplate processor. Other ways are possible,
but would require more Python coding and are outside the scope of this HOWTO.

6.4.3 Using ResourceTemplate
ResourceTemplates are coded in an extension of Python called the “Python Templating Language”. Complete docu-
mentation of the PTL is available at the quixote web site6. The web server will expect the PTL source file to define a
variable named resource. This should be a twisted.web.server.Resource, whose .render method be
called. Usually, you would want to define render using the keyword template rather than def.

Here is a simple example for a resource template.

from twisted.web.resource import Resource
from TwistedQuotes import quoters

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")

quoter = quoters.FortuneQuoter([quotefile])

class QuoteResource(Resource):

template render(self, request):
"""\
<html>
<head><title>Quotes Galore</title></head>

<body><h1>Quotes</h1>"""
quoter.getQuote()
"</body></html>"

resource = QuoteResource()

Resource Template for Quotes — webquote.rtl

6.5 Creating XML-RPC Servers and Clients with Twisted

6.5.1 Introduction
XML-RPC7 is a simple request/reply protocol that runs over HTTP. It is simple, easy to implement and supported
by most computer languages. Twisted’s XML-RPC support uses the xmlrpclib library for parsing - it’s included with

6http://www.mems-exchange.org/software/quixote/doc/PTL.html
7http://www.xmlrpc.com

CHAPTER 6. WEB APPLICATIONS 147

Python 2.2, but can be downloaded for Python 2.1 from Pythonware8.

6.5.2 Creating a XML-RPC server
Making a server is very easy - all you need to do is inherit from twisted.web.xmlrpc.XMLRPC. You then create
methods beginning with xmlrpc . The methods’ arguments determine what arguments it will accept from XML-RPC
clients. The result is what will be returned to the clients.

Methods published via XML-RPC can return all the basic XML-RPC types, such as strings, lists and so on. They
can also return Failure instances to indicate an error has occured, or Binary, Boolean or DateTime instances
(all of these are the same as the respective classes in xmlrpclib. In addition, XML-RPC published methods can return
Deferred instances whose results are one of the above. This allows you to return results that can’t be calculated
immediately, such as database queries. See the Deferred documentation (page 72) for more details.

XMLRPC instances are Resource objects, and they can thus be published using a Site. The following example has
two methods published via XML-RPC, add(a, b) and echo(x). You can run it directly or with twistd -y
script.py

from twisted.web import xmlrpc, server

class Example(xmlrpc.XMLRPC):
"""An example object to be published."""

def xmlrpc_echo(self, x):
"""Return all passed args."""
return x

def xmlrpc_add(self, a, b):
"""Return sum of arguments."""
return a + b

def main():
from twisted.internet.app import Application
app = Application("xmlrpc")
r = Example()
app.listenTCP(7080, server.Site(r))
return app

application = main()

if __name__ == ’__main__’:
application.run(save=0)

After we run this command, we can connect with a client and send commands to the server:

>>> import xmlrpclib

8http://www.pythonware.com/products/xmlrpc/

CHAPTER 6. WEB APPLICATIONS 148

>>> s = xmlrpclib.Server(’http://localhost:7080/’)
>>> s.echo("lala")
’lala’
>>> s.add(1, 2)
3

XML-RPC resources can also be part of a normal Twisted web server, using resource scripts. The following is an
example of such a resource script:

from twisted.web import xmlrpc
from TwistedQuotes import quoters
import os

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")
quoter = quoters.FortuneQuoter([quotefile])

class Quoter(xmlrpc.XMLRPC):

def xmlrpc_quote(self):
return quoter.getQuote()

resource = Quoter()

Source listing — xmlquote.rpy

6.5.3 SOAP Support
From the point of view, of a Twisted developer, there is little difference between XML-RPC support and SOAP support.
Here is an example of SOAP usage:

from twisted.web import soap
from TwistedQuotes import quoters
import os

quotefile = os.path.join(os.path.split(__file__)[0], "quotes.txt")
quoter = quoters.FortuneQuoter([quotefile])

class Quoter(soap.SOAPPublisher):
"""Publish two methods, ’add’ and ’echo’."""

def soap_quote(self):
return quoter.getQuote()

resource = Quoter()

Source listing — soap.rpy

CHAPTER 6. WEB APPLICATIONS 149

6.5.4 Creating an XML-RPC Client
XML-RPC clients in Twisted are meant to look as something which will be familiar either to xmlrpclib or to Per-
spective Broker users, taking features from both, as appropriate. There are two major deviations from the xmlrpclib
way which should be noted:

1. No implicit /RPC2. If the services uses this path for the XML-RPC calls, then it will have to be given explicitly.

2. No magic getattr : calls must be made by an explicit callMethod.

The interface Twisted presents to XML-RPC client is that of a proxy object: twisted.web.xmlrpc.Proxy.
The constructor for the object receives a URL: it must be an HTTP or HTTPS URL. When an XML-RPC service is
described, the URL to that service will be given there.

Having a proxy object, one can just call the callMethod method, which accepts a method name and a variable
argument list (but no named arguments, as these are not supported by XML-RPC). It returns a deferred, which will
be called back with the result. If there is any error, at any level, the errback will be cauled. The exception will be the
relevant Twisted error in the case of a problem with the underlying connection (for example, a timeout), IOError
containing the status and message in the case of a non-200 status or a xmlrpclib.Fault in the case of an XML-
RPC level problem.

from twisted.web.xmlrpc import Proxy
from twisted.internet import reactor

def printValue(value):
print repr(value)
reactor.stop()

def printError(error):
print ’error’, error
reactor.stop()

proxy = Proxy(’http://advogato.org/XMLRPC’)
proxy.callRemote(’test.sumprod’, 3, 5).addCallbacks(printValue, printError)
reactor.run()

prints:

[8, 15]

Chapter 7

Dot Products

7.1 Creating and working with a names (DNS) server
A Names server can be perform three basic operations:

• act as a recursive server, forwarding queries to other servers

• perform local caching of recursively discovered records

• act as the authoritative server for a domain

Creating a non-authoritative server

The first two of these are easy, and you can create a server that performs them with the command mktap dns
--recursive --cache, or launch tkmktap and configure a dns server with it. The result should be a file named
dns.tap. Now switch to a superuser account (if required by your platform to bind to port 53) and run twistd -f
dns.tap. The Application will run and bind to port 53. Try performing a lookup with it, dig twistedmatrix.
com @127.0.0.1.

Creating an authoritative server

To act as the authority for a domain, two things are necessary: the address of the machine on which the domain name
server will run must be registered as a nameserver for the domain; and the domain name server must be configured to
act as the authority. The first requirement is beyond the scope of this howto and will not be covered.

To configure Names to act as the authority for example-domain.com, we first create a zone file for this domain.

zone = [
SOA(

For whom we are the authority
’example-domain.com’,

This nameserver’s name
mname = "ns1.example-domain.com",

150

CHAPTER 7. DOT PRODUCTS 151

Mailbox of individual who handles this
rname = "root.example-domain.com",

Unique serial identifying this SOA data
serial = 2003010601,

Time interval before zone should be refreshed
refresh = "1H",

Interval before failed refresh should be retried
retry = "1H",

Upper limit on time interval before expiry
expire = "1H",

Minimum TTL
minimum = "1H"

),

A(’example-domain.com’, ’127.0.0.1’),
NS(’ns1.example-domain.com’, ’example-domain.com’),

CNAME(’www.example-domain.com’, ’example-domain.com’),
CNAME(’ftp.example-domain.com’, ’example-domain.com’),

MX(’example-domain.com’, 0, ’mail.example-domain.com’),
A(’mail.example-domain.com’, ’123.0.16.43’)

]

Zone file — example-domain.com

Next, run the command mktap dns --pyzone example-domain.com, and then (as above) twistd
-f dns.tap. Now try querying the domain locally (again, with dig): dig -t any example-domain.com
@127.0.0.1.

Names can also read a traditional, BIND-syntax zone file. Specify these with the --bindzone parameter. The
$GENERATE and $INCLUDE directives are not yet supported.

Chapter 8

Working on the Twisted Code Base

8.1 Twisted Coding Standard

8.1.1 Naming
Try to choose names which are both easy to remember and meaningful. Some silliness is OK at the module naming
level (see twisted.spread...) but when choosing class names, be as precise as possible. Write code with a
dictionary and thesaurus open on the table next to you.

Try to avoid overloaded terms. This rule is often broken, since it is incredibly difficult, as most normal words have
already been taken by some other software. More importantly, try to avoid meaningless words. In particular, words
like “handler”, “processor”, “engine”, “manager” and “component” don’t really indicate what something does, only
that it does something.

8.1.2 Testing
Unit tests are written using the PyUnit framework. Many examples are in the twisted.test package, and all tests
should be integrated through the main test suite builder in twisted.test.test all.

Acceptance tests are all automated by the bin/accepttests script currently. (TODO: real acceptance tests strategy!)
Run the unit tests tests before you check anything in.
Let me repeat that, for emphasis: run the unit tests before you check anything in. Code which breaks functionality

is unfortunate and unavoidable. The acceptance tests are highly nonportable and sometimes a pain to run, so this
is pardonable. Code which breaks the unit tests in a way that you could have prevented by running them yourself,
however, may be grounds for anything from merciless taunting through revertion of the breakage to revocation of cvs
commit privileges.

It is strongly suggested that developers learn to use Emacs, and use the twisted-dev.el file included in the
TwistedEmacs package to bind the F9 key to “run unit tests” and bang on it frequently. Support for other editors is
unavailable at this time but we would love to provide it.

If you modify, or write a new, HOWTO, please run admin/generate-domdocs and check the output is all
right. Also, it is useful to run bin/hlint on any howto you may have modified. There should never be any warnings
– if you’re having problems, you can always explicitly silence warnings by using hlint="off" (though please do
this sparingly). If you modify the quotes file, run strfile(1) to check you did not harm it. In particular, if the
“shortest string” is too short, you might have trailing empty lines.

152

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 153

8.1.3 Whitespace
Indentation is 4 spaces per indent. Tabs are not allowed. It is preferred that every block appear on a new line, so that
control structure indentation is always visible.

8.1.4 Modules
Modules must be named in all lower-case, preferably short, single words. If a module name contains multiple words,
they may be separated by underscores or not separated at all.

In most cases, modules should contain more than one class, function, or method; if a module contains only one
object, consider refactoring to include more related functionality in that module.

Depending on the situation, it is acceptable to have imports look like this:

from twisted.internet.defer import Deferred

or like this:

from twisted.internet import defer

That is, modules should import modules or classes and functions, but not packages.

8.1.5 Packages
Package names should follow the same conventions as module names. All modules must be encapsulated in some
package. Nested packages may be used to further organize related modules.

init .py must never contain anything other than a docstring and (optionally) an all attribute. Packages
are not modules and should be treated differently. This rule may be broken to preserve backwards compatibility if a
module is made into a nested package as part of a refactoring.

If you wish to promote code from a module to a package, for example, to break a large module out into several
smaller files, the accepted way to do this is to promote from within the module. For example,

parent/
--- __init__.py ---
import child

--- child.py ---
import parent
class Foo:

pass
parent.Foo = Foo

Every package should be added to the list in setup.py.

8.1.6 Docstrings
Wherever possible, docstrings should be used to describe the purpose of methods, functions, classes, and modules.
In cases where it’s desirable to avoid documenting thoroughly – for example, and evolving interface – insert a place-
holder docstring ("UNDOCUMENTED" is preferred), so that the auto-generated API documentation will not pick up an
extraneous comment as the documentation for that module/class/function.

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 154

Docstrings are never to be used to provide semantic information about an object; this rule may be violated if the
code in question is to be used in a system where this is a requirement (such as Zope).

Docstrings should be indented to the level of the code they are documenting.
Docstrings should be triple-quoted.
Docstrings should be written in epytext format; more documentation is available in the Epytext Markup Language

documentation1.
Additionally, to accommodate emacs users:

• Single quotes of the type of the docstring’s triple-quote should be escaped. This will prevent font-lock from
accidentally fontifying large portions of the file as a string.

• Code examples in docstrings should be prefixed by the — character. This will prevent IM-Python from regarding
sample code as real functions, methods, and classes.

For example,

def foo2bar(f):
"""I am a function to convert foos to bars.

I should be used when you have a foo but you want a bar; note that this is
a non-destructive operation. If I can\’t convert the foo to a bar I will
raise a FooException().

For example::

| import wombat
| def sample(something):
| f = something.getFoo()
| f.doFooThing()
| b = wombat.foo2bar(f)
| b.doBarThing()
| return b

"""
Optionally, actual code can go here.

8.1.7 Scripts
For each “script”, that is, a program you expect a Twisted user to run from the command-line, the following things
must be done:

1. Write a module in twisted.scripts which contains a callable global named run. This will be called by
the command line part with no arguments (it will usually read sys.argv). Feel free to write more functions
or classes in this module, if you feel they are useful to others.

2. Write a file in bin/ which contains the Twisted running-from-CVS header, and ending with

1http://epydoc.sourceforge.net/epytext.html

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 155

from twisted.scripts.yourmodule import run
run()

3. Write a manpage in doc/man. On debian systems you can find a skeleton example of a manpage in
/usr/share/doc/man-db/examples/manpage.example.

4. Add your script to the script list in setup.py.

This will insure your program will work correctly for users of CVS, Windows releases and Debian packages.

8.1.8 ChangeLog
All changes that will affect the way end-users see Twisted should come with an appropriate entry in the ChangeLog
that summarizes that impact.

The correct format for the ChangeLog is GNU changelog format. There is an emacs mode for editing this, use
M-x add-change-log-entry. If you are, for whatever absurd reason, using an editor other than emacs to edit
Twisted, you can use Moshe Zadka’s helpfully provided admin/change script to add a properly-formatted entry.

8.1.9 Classes
Classes are to be named in mixed case, with the first letter capitalized; each word separated by having its first letter
capitalized. Acronyms should be capitalized in their entirety. Class names should not be prefixed with the name of the
module they are in. Examples of classes meeting this criteria:

• twisted.spread.pb.ViewPoint

• twisted.parser.patterns.Pattern

Examples of classes not meeting this criteria:

• event.EventHandler

• main.MainGadget

An effort should be made to prevent class names from clashing with each other between modules, to re-
duce the need for qualification when importing. For example, a Service subclass for Forums might be named
twisted.forum.service.ForumService, and a Service subclass for Words might be twisted.words.service.WordsService.
Since neither of these modules are volatile (see above) the classes may be imported directly into the user’s namespace
and not cause confusion.

8.1.10 Methods
Methods should be in mixed case, with the first letter lower case, each word separated by having its first letter capital-
ized. For example, someMethodName, method.

Sometimes, a class will dispatch to a specialized sort of method using its name; for example,
twisted.reflect.Accessor. In those cases, the type of method should be a prefix in all lower-case with a trailing un-
derscore, so method names will have an underscore in them. For example, get someAttribute. Underscores in
method names in twisted code are therefore expected to have some semantic associated with them.

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 156

8.1.11 Functions
Functions should be named similiarly to methods.

Functions or methods which are responding to events to complete a callback or errback should be named cb
MethodName or ebMethodName, in order to distinguish them from normal methods.

8.1.12 Attributes
Attributes should be named similarly to functions and methods. Attributes should be named descriptively; attribute
names like mode, type, and buf are generally discouraged. Instead, use displayMode, playerType, or input
Buffer.

Do not use Python’s “private” attribute syntax; prefix non-public attributes with a single leading underscore. Since
several classes have the same name in Twisted, and they are distinguished by which package they come from, Python’s
double-underscore name mangling will not work reliably in some cases. Also, name-mangled private variables are
more difficult to address when unit testing or persisting a class.

An attribute (or function, method or class) should be considered private when one or more of the following condi-
tions are true:

• The attribute represents intermediate state which is not always kept up-to-date.

• Referring to the contents of the attribute or otherwise maintaining a reference to it may cause resources to leak.

• Assigning to the attribute will break internal assumptions.

• The attribute is part of a known-to-be-sub-optimal interface and will certainly be removed in a future release.

8.1.13 Database
Database tables will be named with plural nouns.

Database columns will be named with underscores between words, all lower case, since most databases do not
distinguish between case.

Any attribute, method argument, or method name that corresponds directly to a column in the database will be
named exactly the same as that column, regardless of other coding conventions surrounding that circumstance.

All SQL keywords should be in upper case.

8.1.14 C Code
Wherever possible, C code should be optional, and the default python implementation should be maintained in tandem
with it. C code should be strict ANSI C, and must build using GCC as well as Visual Studio for Windows, and really
shouldn’t have any problems with other compilers either. Don’t do anything tricky.

C code should only be used for efficiency, not for binding to external libraries. If your particular code is not
frequently run, write it in Python. If you require the use of an external library, develop a separate, external bindings
package and make your twisted code depend on it.

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 157

8.1.15 Checkin Messages
Thanks to CVSToys, the checkin messages are being used in a myriad of ways. Because of that, you need to observe
a few simple rules when writing a checkin message.

The first line of the message is being used as both the subject of the commit e-mail and the announcement on
#twisted. Therefore, it should be short (aim for < 80 characters) and descriptive – and must be able to stand alone (it
is best if it is a complete sentence). The rest of the e-mail should be separated with hard line breaks into short lines (<
70 characters). This is free-format, so you can do whatever you like here.

Checkin messages should be about what, not how: we can get how from CVS diff. Explain reasons for checkins,
and what they affect.

Each commit should be a single logical change, which is internally consistent. If you can’t summarize your
changes in one short line, this is probably a sign that they should be broken into multiple checkins.

8.1.16 Recommendations
These things aren’t necessarily standardizeable (in that code can’t be easily checked for compliance) but are a good
idea to keep in mind while working on Twisted.

If you’re going to work on a fragment of the Twisted codebase, please consider finding a way that you would use
such a fragment in daily life. I use the Twisted Web server on the main TML website, and aside from being good PR,
this encourages you to actively maintain and improve your code, as the little everyday issues with using it become
apparent.

Twisted is a big codebase! If you’re refactoring something, please make sure to recursively grep for the names of
functions you’re changing. You may be surprised to learn where something is called. Especially if you are moving or
renaming a function, class, method, or module, make sure that it won’t instantly break other code.

8.2 HTML Documentation Standard for Twisted

8.2.1 Allowable Tags
Please try to restrict your HTML usage to the following tags (all only for the original logical purpose, and not whatever
visual effect you see): <html>, <title>, <head>, <body>, <h1>, <h2, <h3>, , , <dl>, ,
<dt>, <dd>, <p>, <code>, , <blockquote>, <a>, <cite>, <div>, , , ,
<pre>, <q>, <table>,<tr>, <td> and <th>.

Please avoid using the quote sign (") for quoting, and use the relevant html tags (<q></q>) – it is impossible to
distinguish right and left quotes with the quote sign, and some more sophisticated output methods work better with
that distinction.

8.2.2 Multi-line Code Snippets
Multi-line code snippets should be delimited with a <pre> tag, with a mandatory “class” attribute. The conventional-
ized classes are “python”, “python-interpreter”, and “shell”. For example:

“python”

<p>
For example, this is how one defines a Resource:

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 158

</p>

<pre class="python">
from twisted.web import resource

class MyResource(resource.Resource):
def render(self, request):

return "Hello, world!"
</pre>

For example, this is how one defines a Resource:

from twisted.web import resource

class MyResource(resource.Resource):
def render(self, request):

return "Hello, world!"

Note that you should never have leading indentation inside a <pre> block – this makes it hard for readers to
copy/paste the code.

“python-interpreter”

<pre class="python-interpreter">
>>> from twisted.web import resource
>>> class MyResource(resource.Resource):
... def render(self, request):
... return "Hello, world!"
...
>>> MyResource().render(None)
"Hello, world!"
</pre>

>>> from twisted.web import resource
>>> class MyResource(resource.Resource):
... def render(self, request):
... return "Hello, world!"
...
>>> MyResource().render(None)
"Hello, world!"

“shell”

<pre class="shell">
$ mktap web --path /var/www
</pre>

$ mktap web --path /var/www

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 159

8.2.3 Code inside paragraph text
For single-line code-snippets and attribute, method, class, and module names, use the <code> tag, with a class of
“API” or “python”. During processing, module or class-names with class “API” will automatically be looked up in the
API reference and have a link placed around it referencing the actual API documents for that module/classname. If
you wish to reference an API document, then make sure you at least have a single module-name so that the processing
code will be able to figure out which module or class you’re referring to.

You may also use the base attribute in conjuction with a class of “API” to indicate the module that should be
prepended to the module or classname. This is to help keep the documentation clearer and less cluttered by allowing
links to API docs that don’t need the module name.

<p>
To add a <code class="API">twisted.web.widgets.Widget</code>
instance to a <code class="API"
base="twisted.web.widgets">Gadget</code> instance, do
<code class="python">myGadget.putWidget("widgetPath",
MyWidget())</code>.

</p>

<p>
(implementation note: the widgets are stored in the <code
class="python">gadgetInstance.widgets</code> attribute,
which is a
list.)

</p>

To add a twisted.web.widgets.Widget instance to a Gadget instance, do myGadget.put
Widget("widgetPath", MyWidget()).

(implementation note: the widgets are stored in the gadgetInstance.widgets attribute, which is a list.)

8.2.4 Headers
It goes without mentioning that you should use <hN> in a sane way – <h1> should only appear once in the document,
to specify the title. Sections of the document should use <h2>, sub-headers <h3>, and so on.

8.2.5 XHTML
XHTML is mandatory. That means tags that don’t have a closing tag need a “/”; for example, <hr /> . Also, tags
which have “optional” closing tags in HTML need to be closed in XHTML; for example, foo

8.2.6 Tag Case
All tags will be done in lower-case. XHTML demands this, and so do I. :-)

8.2.7 Footnotes
Footnotes are enclosed inside . They must not contain any markup.

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 160

8.2.8 Suggestions
Use hlint to check your documentation is not broken. hlint will never change your HTML, but it will complain
if it doesn’t like it.

Don’t use tables for formatting. ’nuff said.

8.3 Unit Tests in Twisted
Each unit test tests one bit of functionality in the software. Unit tests are entirely automated and complete quickly.
Unit tests for the entire system are gathered into one test suite, and may all be run in a single batch. The result of a
unit test is simple: either it passes, or it doesn’t. All this means you can test the entire system at any time without
inconvenience, and quickly see what passes and what fails.

8.3.1 Unit Tests in the Twisted Philosophy
The Twisted development team adheres to the practice of Extreme Programming2 (XP), and the usage of unit tests is
a cornerstone XP practice. Unit tests are a tool to give you increased confidence. You changed an algorithm – did you
break something? Run the unit tests. If a test fails, you know where to look, because each test covers only a small
amount of code, and you know it has something to do with the changes you just made. If all the tests pass, you’re good
to go, and you don’t need to second-guess yourself or worry that you just accidently broke someone else’s program.

8.3.2 What to Test, What Not to Test
You don’t have to write a test for every single method you write, only production methods that could possibly break.

– Kent Beck, Extreme Programming Explained, p. 58.
”Note: I haven’t yet fully figured this out myself. Anyone else with more experience want to enlighten us? –

Kevin”

8.3.3 Running the Tests
How

$ Twisted/admin/runtests

You’ll find that having something like this in your emacs init files is quite handy:

(defun runtests () (interactive)
(compile "python /somepath/Twisted/admin/runtests"))

(global-set-key [(alt t)] ’runtests)

2http://c2.com/cgi/wiki?ExtremeProgramming

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 161

When

Always always always be sure all the tests pass3 before committing any code. If someone else checks out code at the
start of a development session and finds failing tests, they will not be happy and may decide to hunt you down.

Since this is a geographically dispersed team, the person who can help you get your code working probably isn’t
in the room with you. You may want to share your work in progress over the network, but you want to leave the main
CVS tree in good working order. So use a branch4, and merge your changes back in only after your problem is solved
and all the unit tests pass again.

8.3.4 Adding a Test
Please don’t add new modules to Twisted without adding tests for them too. Otherwise we could change something
which breaks your module and not find out until later, making it hard to know exactly what the change that broke it
was, or until after a release, and nobody wants broken code in a release.

Tests go in Twisted/twisted/test/, and are named test foo.py, where foo is the name of the module or package
being tested. Extensive documentation on using the PyUnit framework for writing unit tests can be found in the links
section (page 161) below.

One deviation from the standard PyUnit documentation: To ensure that any variations in test results are due to
variations in the code or environment and not the test process itself, Twisted ships with its own copy of the PyUnit
testing framework. That just means that when you import the unittest module, you will from pyunit import
unittest instead of the standard import unittest.

(Now that unittest has been in the Python standard library for several releases, I’m even less convinced of this
argument than before, but doesn’t add more than a second or two to download time, so I don’t worry it too much.)

As long as you have followed the module naming and placement conventions, runtests will be smart enough
to pick up any new tests you write.

8.3.5 Links
• A chapter on Unit Testing5 in Mark Pilgrim’s Dive Into Python6.

• unittest7 module documentation, in the Python Library Reference8.

• UnitTests9 on the PortlandPatternRepository Wiki10, where all the cool ExtremeProgramming11 kids hang out.

• Unit Tests12 in Extreme Programming: A Gentle Introduction13.

• Ron Jeffries espouses on the importance of Unit Tests at 100%14.

3http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm
4http://www.cvshome.org/docs/manual/cvs 5.html
5http://diveintopython.org/roman divein.html
6http://diveintopython.org
7http://www.python.org/doc/current/lib/module-unittest.html
8http://www.python.org/doc/current/lib/
9http://c2.com/cgi/wiki?UnitTests

10http://c2.com/cgi/wiki
11http://c2.com/cgi/wiki?ExtremeProgramming
12http://www.extremeprogramming.org/rules/unittests.html
13http://www.extremeprogramming.org
14http://www.xprogramming.com/xpmag/expUnitTestsAt100.htm

CHAPTER 8. WORKING ON THE TWISTED CODE BASE 162

• Ron Jeffries writes about the Unit Test15 in the Extreme Programming practices of C316.

• PyUnit’s homepage17.

• twisted.test18’s inline documentation.

• The twisted/test directory19 in CVS.

15http://www.xprogramming.com/Practices/PracUnitTest.html
16http://www.xprogramming.com/Practices/xpractices.htm
17http://pyunit.sourceforge.net
18http://twistedmatrix.com/documents/TwistedDocs/current/api/public/toc-twisted.test-module.html
19http://twistedmatrix.com/users/jh.twistd/viewcvs/cgi/viewcvs.cgi/twisted/test/?cvsroot=Twisted

Chapter 9

Manual Pages

9.1 COIL.1

9.1.1 NAME
coil - configure twisted TAP files

9.1.2 SYNOPSIS
coil [–new=name] <file.tap>

coil –help

9.1.3 DESCRIPTION
Once you’ve launched coil, point your browser at http://localhost:9080 to configure the TAP file, and when done hit
Ctrl-C to shutdown and save the changes.

–help Print out a usage message to standard output.

-n, –new<name> Create a new twisted Application.

-p, –port<port> Run the coil web server on <port> (defaults to 9080)

-l, –localhost Bind only to localhost, instead of to all interfaces, thus only letting local users access coil.

9.1.4 AUTHOR
Written by Itamar Shtull-Trauring, based on coil’s help messages

9.1.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

163

CHAPTER 9. MANUAL PAGES 164

9.1.6 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.1.7 SEE ALSO
twistd(1), mktap(1)

CHAPTER 9. MANUAL PAGES 165

9.2 CONCH.1

9.2.1 NAME
conch - connect to SSH servers

9.2.2 SYNOPSIS
conch [-l user] [-i identity [-i identity ...]] [-c cipher] [-m MAC] [-p port] [-n] [-t] [-T] [-V] [-C] [-N] [-s] [arg [...]]

conch –help

9.2.3 DESCRIPTION
The –help prints out a usage message to standard output.

-t, –user<user> User name to use

-i, –identity<identity> Add an identity file.

-c, –cipher<cipher> Cipher algorithm to use.

-m, –macs<mac> Specify MAC algorithms for protocol version 2.

-p, –port<port> Port to connect to.

-n, –null Redirect input from /dev/null

-t, –tty Allocate a tty even if command is given.

-n, –notty Do not allocate a tty.

-V, –version Display version number only.

-C, –compress nable compression.

-N, –noshell Do not execute a shell or command.

-s, –subsystem Invoke command (mandatory) as SSH2 subsystem

–log Log to stderr

9.2.4 DESCRIPTION
Open an SSH connection to specified server, and either run the command given there or open a remote interactive
shell.

9.2.5 AUTHOR
Written by Moshe Zadka, based on conch’s help messages

CHAPTER 9. MANUAL PAGES 166

9.2.6 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.2.7 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.2.8 SEE ALSO
ssh(1)

CHAPTER 9. MANUAL PAGES 167

9.3 GENERATELORE.1

9.3.1 NAME
generatelore - generate spiffy HTML from a plain subset of HTML

9.3.2 SYNOPSIS
generatelore [-t template] [-a apidir] [-d docsdir] [-e ext] [-u baseurl] [file [...]]

generatelore –help

9.3.3 DESCRIPTION
The –help prints out a usage message to standard output.

-t, –template<template> The template file to follow for generating content (default: template.tpl)

-a, –apidir<apidir> The directory in which a copy of the epydoc-generated api documentation is. If available, will
allow for non-full references to modules and classes.

-e, –ext<extension> The new extension (defaults to xhtml)

-u, –baseurl<url> URL in which the API documentation is available.

9.3.4 DESCRIPTION
The exact HTML syntax to follow is documented in Twisted’s doc-standard.html. If no files are given, all *.html
documents in docsdir will be processed.

9.3.5 AUTHOR
Written by Moshe Zadka, based on generatelore’s help messages

9.3.6 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.3.7 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.3.8 SEE ALSO
html2latex(1)

CHAPTER 9. MANUAL PAGES 168

9.4 HLINT.1

9.4.1 NAME
hlint - check an HTML file for non-compliance with the twisted.lore format

9.4.2 SYNOPSIS
hlint [file [file ...]]

9.4.3 DESCRIPTION
Read each specified file and report errors.

9.4.4 AUTHOR
Written by Moshe Zadka

9.4.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.4.6 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.4.7 SEE ALSO
mktap(1)

CHAPTER 9. MANUAL PAGES 169

9.5 HTML2LATEX.1

9.5.1 NAME
html2latex - generate LaTeX out of a subset of HTML

9.5.2 SYNOPSIS
html2latex [-d directory] [-s] [file [...]]

html2latex –help

9.5.3 DESCRIPTION
The –help prints out a usage message to standard output.

-d, –directory<directory> Directory relative to which links are resolved. The default is the directory in which the
file is.

-s, –section Generate a section of LaTeX, not an article

9.5.4 DESCRIPTION
The exact HTML syntax to follow is documented in Twisted’s doc-standard.html. If no files are given, all *.html
documents in docsdir will be processed.

9.5.5 AUTHOR
Written by Moshe Zadka, based on html2latex’s help messages

9.5.6 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.5.7 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.5.8 SEE ALSO
generatelore(1)

CHAPTER 9. MANUAL PAGES 170

9.6 IM.1

9.6.1 NAME
im - run Instance Messenger, the Tkinter twisted.words client

9.6.2 SYNOPSIS
im

9.6.3 DESCRIPTION
Run Instance Messenger, the Tkinter twisted.words client

9.6.4 AUTHOR
Written by Moshe Zadka, based on im’s help messages

9.6.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.6.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 171

9.7 MANHOLE.1

9.7.1 NAME
manhole - Connect to a Twisted Manhole service

9.7.2 SYNOPSIS
manhole

9.7.3 DESCRIPTION
manhole is a GTK interface to Twisted Manhole services. You can execute python code as if at an interactive Python
console inside a running Twisted process with this.

9.7.4 AUTHOR
Written by Chris Armstrong, copied from Moshe Zadka’s “faucet” manpage.

9.7.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.7.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 172

9.8 MKTAP.1

9.8.1 NAME
mktap - create twisted.servers

9.8.2 SYNOPSIS
mktapapptype [application option]...

mktap –help apptype

9.8.3 DESCRIPTION
The –help prints out a usage message to standard output.

–uid, -u<uid> Application belongs to this uid, and should run with its permissions.

–gid, -d<gid> Application belongs to this gid, and should run with its permissions.

–append, -a<file> Append given servers to given file, instead of creating a new one. File should be be a tap file.

–xml, -x Output as a .tax XML file rather than a pickle.

–source, -s Output as a .tas (AOT Python source) file rather than a pickle.

apptype Can be ’web’, ’portforward’, ’toc’, ’coil’, ’words’, ’manhole’, ’im’, ’news’, ’socks’, ’telnet’, ’parent’, ’sister’,
’ftp’, and ’mail’. Each of those support different options.

9.8.4 portforward options
-h, –host<host> Proxy connections to <host>

-d, –dest port<port> Proxy connections to <port> on remote host.

-p, –port<port> Listen locally on <port>

9.8.5 web options
-u, –user Makes a server with /̃public html and /̃.twistd-web-pb support for users.

–personal Instead of generating a webserver, generate a ResourcePublisher which listens on /̃.twistd-web-pb

–path<path> <path> is either a specific file or a directory to be set as the root of the web server. Use this if you
have a directory full of HTML, cgi, php3, epy, or rpy files or any other files that you want to be served up raw.

-p, –port<port> <port> is a number representing which port you want to start the server on.

-m, –mime type<mimetype> <mimetype> is the default MIME type to use for files in a –path web server when
none can be determined for a particular extension. The default is ’text/html’.

–allow ignore ext Specify wether or not a request for ’foo’ should return ’foo.ext’. Default is off.

CHAPTER 9. MANUAL PAGES 173

-t, –telnet<port> Run a telnet server on <port>, for additional configuration later.

-i, –index<name> Use an index name other than “index.html”

–https<port> Port to listen on for Secure HTTP.

-c, –certificate<filename> SSL certificate to use for HTTPS. [default: server.pem]

-k, –privkey<filename> SSL certificate to use for HTTPS. [default: server.pem]

–processor<ext>=<class name> Adds a processor to those file names. (Only usable if after –path)

–resource-script<script name> Sets the root as a resource script. This script will be re-evaluated on every request.

This creates a web.tap file that can be used by twistd. If you specify no arguments, it will be a demo webserver
that has the Test class from twisted.web.test in it.

9.8.6 toc options
-p<port> <port> is a number representing which port you want to start the server on.

9.8.7 mail options
-r, –relay<ip>,<port>=<queue directory> Relay mail to all unknown domains through given IP and port, using

queue directory as temporary place to place files.

-d, –domain<domain>=<path> generate an SMTP/POP3 virtual maildir domain named “domain” which saves to
“path”

-u, –username<name>=<password> add a user/password to the last specified domains

-b, –bounce to postmaster undelivered mails are sent to the postmaster, instead of being rejected.

-p, –pop<port> <port> is a number representing which port you want to start the pop3 server on.

-s, –smtp<port> <port> is a number representing which port you want to start the smtp server on.

This creates a mail.tap file that can be used by twistd(1)

9.8.8 telnet options
-p, –port<port> Run the telnet server on <port>

-u, –username<name> set the username to <name>

-w, –password<password> set the password to <password>

CHAPTER 9. MANUAL PAGES 174

9.8.9 socks options
-i, –interface<interface> Listen on interface <interface>

-p, –port<port> Run the SOCKSv4 server on <port>

-l, –log<filename> log connection data to <filename>

9.8.10 ftp options
-a, –anonymous Allow anonymous logins

-3, –thirdparty Allow third party connections

–otp Use one time passwords (OTP)

-p, –port<port> Run the FTP server on <port>

-r, –root<path> Define the local root of the FTP server

–anonymoususer<username> Define the the name of the anonymous user

9.8.11 manhole options
-p, –port<port> Run the manhole server on <port>

-u, –user<name> set the username to <name>

-w, –password<password> set the password to <password>

9.8.12 words options
-p, –port<port> Run the Words server on <port>

-i, –irc<port> Run IRC server on port <port>

-w, –web<port> Run web server on port <port>

9.8.13 AUTHOR
Written by Moshe Zadka, based on mktap’s help messages

9.8.14 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.8.15 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 175

9.8.16 SEE ALSO
twistd(1)

CHAPTER 9. MANUAL PAGES 176

9.9 IM.1

9.9.1 NAME
t-im - run Instance Messenger, the GTK+ twisted.words client

9.9.2 SYNOPSIS
t-im

9.9.3 DESCRIPTION
Run Instance Messenger, the GTK+ twisted.words client

9.9.4 AUTHOR
Written by Moshe Zadka, based on t-im’s code

9.9.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.9.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 177

9.10 TAP2DEB.1

9.10.1 NAME
tap2deb - create Debian packages which wrap .tap files

9.10.2 SYNOPSIS
tap2deb [options]

9.10.3 DESCRIPTION
Create a ready to upload Debian package in “.build”

-u, –unsigned do not sign the Debian pacakge

-t, –tapfile<tapfile> Build the application around the given .tap (default twistd.tap)

-y, –type<type> The configuration has the given type . Allowable types are tap, source, xml and python. The first
three types are mktap(1) output formats, while the last one is a manual building of application (see twistd(1), the
-y option).

-p, –protocol<protocol> The name of the protocol this will be used to serve. This is intended as a part of the
description. Default is the name of the tapfile, minus any extensions.

-d, –debfile<debfile> The name of the debian package. Default is ’twisted-’+protocol.

-v, –version<version> The version of the Debian package. The default is 1.0

-e, –description<description> The one-line description. Default is uninteresting.

-l, –long description<long description> A multi-line description. Default is explanantion about this being an auto-
matic package created from tap2deb.

-m, –maintainer<maintainer> The maintainer, as “Name Lastname <email address>”. This will go in the meta-
files, as well as be used as the id to sign the package.

9.10.4 AUTHOR
Written by Moshe Zadka, based on twistd’s help messages

9.10.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.10.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 178

9.10.7 SEE ALSO
mktap(1)

CHAPTER 9. MANUAL PAGES 179

9.11 TAPCONVERT.1

9.11.1 NAME
tapconvert - convert Twisted configurations from one format to another

9.11.2 SYNOPSIS
tapconvert -i input -o output [-f input-type] [-t output-type] [-d] [-e]

tapconvert –help

9.11.3 DESCRIPTION
The –help prints out a usage message to standard output.

–in, -i<input file> The name of the input configuration.

–out, -o<output file> The name of the output configuration.

–typein, -f<input type> The type of the input file. Can be either ’guess’, ’python’, ’pickle’, ’xml’, or ’source’.
Default is ’guess’.

–typeout, -t<output type> The type of the output file. Can be either ’python’, ’pickle’, ’xml’, or ’source’. Default is
’source’.

–decrypt, -d Decrypt input.

–encrypt, -e Encrypt output.

9.11.4 AUTHOR
Written by Moshe Zadka, based on tapconvert’s help messages

9.11.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.11.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.11.7 SEE ALSO
mktap(1)

CHAPTER 9. MANUAL PAGES 180

9.12 TRIAL.1

9.12.1 NAME
trial - run unit tests

9.12.2 SYNOPSIS
trial [-vb] [-r reactor] [-l logfile] [-m module [-m module ...]] [-p package [-p package ...]]

trial –help

9.12.3 DESCRIPTION
trial loads and executes a suite of unit tests, obtained from modules and packages listed on the command line. The
–help option prints out a usage message to standard output.

-s, –summary Print out just a machine-parseable summary of the results.

-v, –verbose Be more verbose. Without this option, trial prints out a single character for each test. (e.g. An ’F’ for a
failure, A ’.’ for a success). With this option, trial prints a single line for each test. This is especially useful for
gauging how long each test takes.

-m, –module<module> Module containing test cases.

-p, –package<package> Package containing modules that contain test cases. trial loads modules named ’test ’
within the given package.

-l, –logfile<logfile> Log exceptions (and other things) to the given logfile.

-r, –reactor<reactor> Use this reactor for running the tests.

-b, –debug Run the tests in the Python debugger.

9.12.4 AUTHOR
Written by Jonathan M. Lange

9.12.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.12.6 COPYRIGHT
Copyright c©2003 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 9. MANUAL PAGES 181

9.13 TWISTD.1

9.13.1 NAME
twistd - run twisted.internet.app.Application pickles

9.13.2 SYNOPSIS
twistd [options]

9.13.3 DESCRIPTION
Read an twisted.internet.app.Application out of a file and runs it.

-n, –nodaemon Don’t daemonize (stay in foreground)

-q, –quiet be a little more quiet

-p, –profile Run profiler

-b, –debug Run the application in the Python Debugger (implies nodaemon option). Sending a SIGINT signal to the
process will drop it into the debugger.

-o, –no save Do not save shutdown state

-l, –logfile<logfile> Log to a specified file, - for stdout (default twistd.log). The log file will be rotated on SIGUSR1.

–pidfile<pidfile> Save pid in specified file (default twistd.pid)

–chroot<directory> Chroot to a supplied directory before running (default – don’t chroot). Chrooting is done before
changing the current directory.

-d, –rundir<directory> Change to a supplied directory before running (default .)

-r, –reactor<reactor> Choose which ReactorCore event loop to use, such as ’poll’ or ’gtk’.

–spew Write an extremely verbose log of everything that happens. Useful for debugging freezes or locks in complex
code.

-f, –file<tap file> Read the given .tap file (default twistd.tap)

-x, –xml<tax file> Load an Application from the given .tax (XML) file.

-s, –source<tas file> Load an Application from the given .tas (AOT Python source) file.

-y, –python<python file> Use the variable “application” from the given Python file. This setting, if given, overrides
-f.

-g, –plugin<plugin name> Read config.tac from a plugin package, as with -y.

–syslog Log to syslog, not to file.

–prefix<prefix> Use the specified prefix when logging to logfile. Default is “twisted”.

CHAPTER 9. MANUAL PAGES 182

9.13.4 AUTHOR
Written by Moshe Zadka, based on twistd’s help messages

9.13.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.13.6 COPYRIGHT
Copyright c©2000 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.13.7 SEE ALSO
mktap(1)

CHAPTER 9. MANUAL PAGES 183

9.14 WEBSETROOT.1

9.14.1 NAME
websetroot - set the root of a Twisted web server

9.14.2 SYNOPSIS
websetroot {-f tapfile — -y codefile — -x XML — -s AOT } {–pickle pickle — –script script } [-e] [–port port]

websetroot –help

9.14.3 DESCRIPTION
The –help prints out a usage message to standard output.

-e, –encrypted The specified tap/aos/xml file is encrypted.

-p, –port<port> The port the web server is running on [default: 80]

-f, –file<file> read the given .tap file [default: twistd.tap]

-y, –python<file> read an application from within a Python file

-x, –xml<file> Read an application from a .tax file (Marmalade format).

-s, –source<file> Read an application from a .tas file (AOT format).

–script<file> Read the root resource from the given resource script file

–pickle<file> Read the root resource from the given resource pickle file

9.14.4 AUTHOR
Written by Moshe Zadka, based on websetroot’s help messages

9.14.5 REPORTING BUGS
Report bugs to <twisted-python@twistedmatrix.com>.

9.14.6 COPYRIGHT
Copyright c©2002 Matthew W. Lefkowitz This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

9.14.7 SEE ALSO
mktap(1)

Chapter 10

Appendix

10.1 The Twisted FAQ

10.1.1 What is “Twisted”?
Please see Twisted1

10.1.2 Why should I use Twisted?
See The Twisted Advantage2

10.1.3 I have a problem “getting” Twisted.
Did you check the HOWTO collection? There are so many documents there that they might overwhelm you... try
starting from the index, reading through the overviews and seeing if there seems to be a chapter which explains what
you need to. You can try reading the PostScript or PDF formatted books, inside the distribution. And, remember, the
source will be with you... always.

10.1.4 Why is Twisted so big?
Twisted is a lot of things, rolled into one big package. We’re not sure if it’ll stay this way, yet, but for now, if you have
only specific needs, we recommend grabbing the big Twisted tarball, and if you want, you can run the ’setup.py’ script
with a modified config file to generate a package with only certain Twisted sub-packages. Twisted as a whole makes
it into many operating system distributions (FreeBSD, Debian and Gentoo, at least) so size shouldn’t be an issue for
the end developer or user. In addition, packaging Twisted as a whole makes sure the end users do not have to worry
about versioning parts of Twisted and inter-version compatibility.

If you are distributing Twisted to end-users, you can base your distribution on the “Nodocs” packages, which are
signficantly smaller.

1http://twistedmatrix.com/products/twisted
2http://twistedmatrix.com/services/twisted-advantage

184

CHAPTER 10. APPENDIX 185

10.1.5 But won’t Twisted bloat my program, since it’s so big?
No. You only need to import the sub-packages which you want to use, meaning only those will be loaded into memory.
So if you write a low-level network protocol, you’d only import twisted.internet, leaving out extraneous things like
twisted.web, etc. Twisted itself is very careful with internal dependancies, so importing one subpackage is not likely
to import the whole twisted package.

10.1.6 Does the 1.0 release mean that all of Twisted’s APIs are stable?
No, only specific parts of Twisted are stable, i.e. we only promise backwards compatibility for some parts of Twisted.
While these APIs may be extended, they will not change in ways that break existing code that uses them.

While other parts of Twisted are not stable, we will however do our best to make sure that there is backwards
compatibility for these parts as well. In general, the more the module or package are used, and the closer they are to
being feature complete, the more we will concentrate on providing backwards compatibility when API changes take
place.

10.1.7 Which parts of Twisted 1.0 are stable?
Only modules explictily marked as such can be considered stable. Semi-stable modules may change, but not in a large
way and some sort of backwards-compatibily will probably be provided. If no comment about API stability is present,
assume the module is unstable.

In Twisted 1.0, most of twisted.internet is completely stable, other than:

1. UDP support

2. twisted.internet.win32eventreactor - will be replaced with win32support in future.

But as always, the only accurate way of knowing a module’s stability is reading the module’s docstrings.

10.1.8 How can I access self.factory from my Protocol’s init ?
You can’t. A Protocol doesn’t have a Factory when it is created. Instead, you should probably be doing that in your
Protocol’s connectionMade method.

Similarly you shouldn’t be doing “real” work, like connecting to databases, in a Factory’s init either. Instead,
do that in startFactory.

See Writing Servers (page 58) and Writing Clients (page 62) for more details.

10.1.9 Is the Twisted web server a toy?
No. It is a production grade server. It is running continously on several sites and has been proven quite stable. The
server can take loads of up to 3000 users at a time and still keep churning several million requests a day, even on low
end hardware. It can serve static files or dynamically rendered pages.

10.1.10 But can Twisted Web do PHP?
Yes. It works out-of-the-box, so long as you’ve got the standalone php interpreter installed. You might also want to
take a look at Woven, Twisted’s native web templating system.

CHAPTER 10. APPENDIX 186

10.1.11 And can Twisted Web do virtual hosting?
Can it ever!

You can decide to go with one big process for all of them, a front server and a seperate server for each virtual host
(for example, for permission reasons), and you can even mix-and-match between Apache and Twisted (for example,
put Apache in the front and have Twisted handle some subset of the virtual host).

10.1.12 Where can I find out how to write Twisted servers?
Try Writing Servers3.

10.1.13 Twisted is cool, but I need to add more functionality.
Great! Read our the docs, and if you’re feeling generous, contribute patches.

10.1.14 I have a patch. How do I maximize the chances the Twisted developers will include
it?

Use unified diff. Either use cvs diff -u or, better yet, make a clean checkout and use diff -urN between them.
Make sure your patch applies cleanly. Then, send it to the mailing list inlined and without any word wrapping.

10.1.15 Twisted really needs documentation for X, Y or Z - how come it’s not documented?.
We are doing the best we can, and there is documentation in progress for many parts of Twisted. There is a limit to
how much we can do in our free time. See also the answer to the next question.

10.1.16 My company would love to use Twisted, but it’s missing feature X, can you imple-
ment it?

You have 3 options:

• Pay one of the Twisted developers to implement the feature.

• Implement the feature yourself.

• Add a feature request to our bug tracker. We will try to implement the feature, but there are no guarantees when
and if this will happen.

10.1.17 Help!
Ask for help where the Twisted team hangs out4

3http://www.twistedmatrix.com/documents/howto/servers
4http://twistedmatrix.com/services/online-help

CHAPTER 10. APPENDIX 187

10.1.18 I have this cool patch. To whom do I send it?
To the mailing list5. If no one picks it up after a days, it’s recommended that you add it to the bug tracker6 so that it
doesn’t get lost.

10.1.19 There’s a bug in Twisted. Where do I report it?
Unless it is a show-stopper bug, we usually won’t fix it if it’s already fixed in CVS7, so you would do well to look
there. Then send any pertinent information about the bug (hopefully as much information needed to reproduce it: OS,
CVS versions of any important files, Python version, code you wrote or things you did to trigger the bug, etc.) to the
mailing list8. If no one answers immediately, you should add it to the bug tracker9.

10.1.20 How do I use twisted.web to do complex things?
See the Twisted.Web Howto (page 22).

10.1.21 I’ve been using Woven since before it was called Woven. I just upgraded and now
I’m getting a confusing traceback talking about INodeMutator. What gives?

You probably have code that’s survived the upgrade from PyXML’s minidom to Twisted’s microdom. Try deleting
any .pxp files that you have lying around and the error will probably go away.

10.1.22 When I try to install my reactor, I get errors about a reactor already being installed.
What gives?

Here’s the rule - installing a reactor should always be the first thing you do, and I do mean first. Importing other stuff
before you install the reactor can break your code.

Tkinter and wxPython support, as they do not install a new reactor, can be done at any point, IIRC.

10.1.23 Wow the Twisted documentation is nice! I want my docs to look like that too!
Now you can, with twisted.lore. See the manual pages for generatelore and html2latex. For source
format documentation, see the documentation standard description (page 157).

10.1.24 twistd won’t load my .tap file!
When the pickled application state cannot be loaded for some reason, it is common to get a rather opaque error like
so:

% twistd -f test2.tap

Failed to load application: global name ’initRun’ is not defined

5http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
6http://sourceforge.net/tracker/?group id=49387&atid=456015
7http://twistedmatrix.com/developers/cvs
8http://twistedmatrix.com/cgi-bin/mailman/listinfo/twisted-python
9http://sourceforge.net/tracker/?group id=49387&atid=456015

CHAPTER 10. APPENDIX 188

The rest of the error will try to explain how to solve this problem, but a short comment first: this error is indeed
terse – but there is probably more data available elsewhere – namely, the twistd.log file. Open it up to see the full
exception.

To load a .tap file, as with any unpickling operation, all the classes used by all the objects inside it must be
accessible at the time of the reload. This may require the PYTHONPATH variable to have the same directories as were
available when the application was first pickled.

A common problem occurs in single-file programs which define a few classes, then create instances of those classes
for use in a server of some sort. If the class is used directly, the name of the class will be recorded in the .tap file
as something like main .MyProtocol. When the application is reloaded, it will look for the class definition in
main , which probably won’t have it. The unpickling routines need to know the module name, and therefore the

source file, from which the class definition can be loaded.
The way to fix this is to import the class from the same source file that defines it: if your source file is called

myprogram.py and defines a class called MyProtocol, you will need to do a from myprogram import My
Protocol before (and in the same namespace as) the code that references the MyProtocol class. This makes it
important to write the module cleanly: doing an import myprogram should only define classes, and should not
cause any other subroutines to get run. All the code that builds the Application and saves it out to a .tap file must be
inside an if name == ’ main ’ clause to make sure it is not run twice (or more).

When you import the class from the module using an “external” name, that name will be recorded in the pickled
.tap file. When the .tap is reloaded by twistd, it will look for myprogram.py to provide the definition of My
Protocol.

Here is a short example of this technique:

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import udp

Protocol Implementation

This is just about the simplest possible protocol

class Echo(Protocol):
def dataReceived(self, data):

"As soon as any data is received, write it back."
self.transport.write(data)

Persistent Application Builder

This builds a .tap file

if __name__ == ’__main__’:
Since this is persistent, it’s important to get the module naming right
(If we just used Echo, then it would be __main__.Echo when it attempted
to unpickle)
import echoserv
from twisted.internet.app import Application
factory = Factory()
factory.protocol = echoserv.Echo

CHAPTER 10. APPENDIX 189

app = Application("echo")
app.listenTCP(8000,factory)
app.listenUDP(8000, factory)
app.save("start")

doc/examples/echoserv.py — echoserv.py

10.1.25 How do I e-mail a Twisted developer?
First, note that in many cases this is the wrong thing to do: if you have a question about a part of Twisted, it’s usually
better to e-mail the mailing list. However, the preferred e-mail addresses for all Twisted developers are listed in the
file “CREDITS” in the CVS repository.

10.2 Twisted Glossary
Adapter An object which wraps another object to conform to a particular Interface (page 190), when some code

requests the interface from an object. See twisted.python.components.

Application A twisted.internet.app.Application. There are HOWTOs on creating and manipulat-
ing (page 20) them as a system-administrator, as well as using (page 35) them in your code.

Authorizer An object responsible for managing Identities (page 190). See twisted.cred.authorizer.

Banana The low-level data marshalling layer of Twisted Spread (page 191). See twisted.spread.banana.

Broker A twisted.spread.pb.Broker, the object request broker for Twisted Spread (page 191).

COIL “COnfiguration ILlumination”. It is a (stagnant and incomplete) end-user interface for configuring Twisted
applications. See twisted.coil.

component A special kind of (persistent) Adapter that works with a twisted.python.components.
Componentized.

Componentized An object that can hold a number of persistent Adapters, which we call “components”.

conch Twisted’s SSH implementation.

Connector Object used to interface between client connections and protocols, usually used with a twisted.
internet.protocol.ClientFactory to give you control over how a client connection reconnects. See
twisted.internet.interfaces.IConnector and Writing Clients (page 62).

Consumer An object that consumes data from a Producer (page 191). See twisted.internet.interfaces.
IConsumer.

Cred Twisted’s authentication API, twisted.cred. See Introduction to Twisted Cred (page 15) and Twisted Cred
usage (page 120).

CVSToys A nifty set of tools for CVS, available at http://twistedmatrix.com/users/acapnotic/wares/code/CVSToys/.

CHAPTER 10. APPENDIX 190

Deferred A instance of twisted.internet.defer.Deferred, an abstraction for handling chains of call-
backs and error handlers (“errbacks”). See the Deferring Execution (page 72) HOWTO.

Enterprise Twisted’s RDBMS support. It contains twisted.enterprise.adbapi for asynchronous access to
any standard DB-API 2.0 module, and twisted.enterprise.row, a “Relational Object Wrapper (page
191)”. See Introduction to Twisted Enterprise (page 13) and Twisted Enterprise Row Objects (page 47) for more
details.

errback A callback attached to a Deferred (page 190) with .addErrback to handle errors.

Factory In general, an object that constructs other objects. In Twisted, a Factory usually refers to a twisted.
internet.protocol.Factory, which constructs Protocol (page 191) instances for incoming or outgoing
connections. See Writing Servers (page 58) and Writing Clients (page 62).

Failure Basically, an asynchronous exception that contains traceback information; these are used for passing errors
through asynchronous callbacks.

Identity A Cred (page 189) object that represents a single user with a username and a password of some sort.

im, t-im Abbreviation of “(Twisted) Instance Messenger (page 190)”.

Instance Messenger Instance Messenger is a multi-protocol chat program that comes with Twisted. It can communi-
cate via TOC with the AOL servers, via IRC, as well as via PB (page 191) with Twisted Words (page 192). See
twisted.im.

Interface A class that defines and documents methods that a class conforming to that interface needs to have. A
collection of core twisted.internet interfaces can be found in twisted.internet.interfaces.

Jelly The serialization layer for Twisted Spread (page 191), although it can be used seperately from Twisted Spread as
well. It is similar in purpose to Python’s standard pickle module, but is more network-friendly, and depends
on a separate marshaller (Banana (page 189), in most cases). See twisted.spread.jelly.

Lore twisted.lore is Twisted’s documentation system. The source format is a subset of XHTML, and output
formats include HTML and LaTeX. See generatelore(1) (page 167) and the Twisted Documentation Standard
(page 157).

Manhole A debugging/administration interface to a Twisted application. See Debugging with Manhole (page 26).

Marmalade An XML-based serialisation module. See twisted.persisted.marmalade.

Microdom A partial DOM implementation using SUX (page 191). It is simple and pythonic, rather than strictly
standards-compliant. See twisted.web.microdom.

Names Twisted’s DNS server, found in twisted.names.

PB Abbreviation of “Perspective Broker (page 191)”.

Perspective A Cred (page 189) object; an Identity (page 190)’s “perspective” (or “view”) onto a Service. There
may be many Perspectives associated with an Identity, and an Identity may have multiple Perspectives onto the
same Service (page 191).

CHAPTER 10. APPENDIX 191

Perspective Broker The high-level object layer of Twisted Spread (page 191), implementing semantics for method
calling and object copying, caching, and referencing. See twisted.spread.pb.

Producer An object that generates data a chunk at a time, usually to be processed by a Consumer (page 189). See
twisted.internet.interfaces.IProducer.

Protocol In general each network connection has its own Protocol instance to manage connection-specific state.
There is a collection of standard protocol implementations in twisted.protocols. See also Writing
Servers (page 58) and Writing Clients (page 62).

PSU There is no PSU.

Reactor The core event-loop of a Twisted application. See Reactor Basics (page 57).

Reality See “Twisted Reality (page 191)”

Resource A twisted.web.resource.Resource, which are served by Twisted Web. Resources can be as
simple as a static file on disk, or they can have dynamically generated content.

ROW Relational Object Wrapper, an object-oriented interface to a relational database. See Twisted Enterprise Row
Objects (page 47).

Service A twisted.cred.service.Service. See Twisted Cred usage (page 120) for a description of how
they relate to Applications (page 189), Perspectives (page 190) and Identities (page 190).

Spread Twisted Spread10 is Twisted’s remote-object suite. It consists of three layers: Perspective Broker (page 191),
Jelly (page 190) and Banana. (page 189) See Writing Applications with Perspective Broker (page 13).

Sturdy A persistent reference manager for PB (page 191). See twisted.spread.sturdy.

SUX Small Uncomplicated XML, Twisted’s simple XML parser written in pure Python. See twisted.
protocols.sux.

TAP Twisted Application Pickle, or simply just a Twisted APplication. A serialised application that created with
mktap and runnable by twistd. See Using the Utilities (page 20).

Tendril A bridge between Twisted Words (page 192) and IRC. See twisted.words.tendril.

Trial twisted.trial, Twisted’s unit-testing framework, modelled after pyunit11.

Twisted Matrix Laboratories The team behind Twisted. http://twistedmatrix.com/.

Twisted Reality In days of old, the Twisted Reality12 multiplayer text-based interactive-fiction system was the main
focus of Twisted Matrix Labs; Twisted, the general networking framework, grew out of Reality’s need for better
network functionality. Twisted Reality has since been broken off into a separate project.

usage The twisted.python.usage module, a replacement for the standard getopt module for parsing
command-lines which is much easier to work with. See Parsing command-lines (page 51).

10http://twistedmatrix.com/products/spread
11http://pyunit.sourceforge.net/
12http://twistedmatrix.com/products/reality

CHAPTER 10. APPENDIX 192

Words Twisted Words is a multi-protocol chat server that uses the Perspective Broker (page 191) protocol as its native
communication style. See twisted.words.

Woven Web Object Visualization Environment. A web templating system based on XML and the Model-View-
Controller design pattern. See Developing Componentized Applications using Woven (page 136).

Zoot Twisted’s Gnutella implementation (currently very incomplete). See twisted.zoot.

10.3 Banana Protocol Specifications

10.3.1 Introduction
Banana is an efficient, extendable protocol for sending and receiving s-expressions. A s-expression in this context is a
list composed of byte strings, integers, large integers, floats and/or s-expressions.

10.3.2 Banana Encodings
The banana protocol is a stream of data composed of elements. Each element has the following general structure -
first, the length of element encoded in base-128, least signficant bit first. For example length 4674 will be sent as
0x42 0x24. For certain element types the length will be omitted (e.g. float) or have a different meaning (it is the
actual value of integer elements).

Following the length is a delimiter byte, which tells us what kind of element this is. Depending on the element
type, there will then follow the number of bytes specified in the length. The byte’s high-bit will always be set, so that
we can differentiate between it and the length (since the length bytes use 128-base, their high bit will never be set).

10.3.3 Element Types
Given a series of bytes that gave us length N, these are the different delimiter bytes:

List – 0x80 The following bytes are a list of N elements. Lists may be nested, and a child list counts as only one
element to its parent (regardless of how many elements the child list contains).

Integer – 0x81 The value of this element is the positive integer N. Following bytes are not part of this element.
Integers can have values of 0 <= N <= 2147483647.

String – 0x82 The following N bytes are a string element.

Negative Integer – 0x83 The value of this element is the integer N * -1, i.e. -N. Following bytes are not part of this
element. Negative integers can have values of 0 >= -N >= -2147483648.

Float - 0x84 The next 8 bytes are the float encoded in IEEE 754 floating-point “double format” bit layout. No length
bytes should have been defined.

Large Integer – 0x81 The value of this element is the positive large integer N. Following bytes are not part of this
element. Large integers have no size limitation.

Large Negative Integer – 0x83 The value of this element is the negative large integer -N. Following bytes are not
part of this element. Large integers have no size limitation.

Large integers are intended for arbitary length integers. Regular integers types (positive and negative) are limited
to 32-bit values.

CHAPTER 10. APPENDIX 193

Examples

Here are some examples of elements and their encodings - the type bytes are marked in bold:

1 0x01 0x81

-1 0x01 0x83

1.5 0x84 0x3f 0xf8 0x00 0x00 0x00 0x00 0x00 0x00

"hello" 0x05 0x82 0x68 0x65 0x6c 0x6c 0x6f

[] 0x00 0x80

[1, 23] 0x02 0x80 0x01 0x81 0x17 0x81

123456789123456789 0x15 0x3e 0x41 0x66 0x3a 0x69 0x26 0x5b 0x01 0x85

[1, ["hello"]] 0x02 0x80 0x01 0x81 0x01 0x80 0x05 0x82 0x68 0x65 0x6c 0x6c
0x6f

10.3.4 Profiles
The Banana protocol is extendable. Therefore, it supports the concept of profiles. Profiles allow developers to extend
the banana protocol, adding new element types, while still keeping backwards compatability with implementations
that don’t support the extensions. The profile used in each session is determined at the handshake stage (see below.)

A profile is specified by a unique string. This specification defines two profiles - "none" and "pb". The
"none" profile is the standard profile that should be supported by all Banana implementations. Additional profiles
may be added in the future.

The ”none” Profile

The "none" profile is identical to the delimiter types listed above. It is highly recommended that all Banana clients
and servers support the "none" profile.

The ”pb” Profile

The "pb" profile is intended for use with the Perspective Broker protocol, that runs on top of Banana. Basically, it
converts commonly used PB strings into shorter versions, thus minimizing bandwidth usage. It does this by adding an
additional delimiter byte, 0x87. This byte should not be prefixed by a length. It should be followed by a single byte,
which tells us to which string element to convert it:

0x01 ’None’

0x02 ’class’

0x03 ’dereference’

0x04 ’reference’

0x05 ’dictionary’

CHAPTER 10. APPENDIX 194

0x06 ’function’

0x07 ’instance’

0x08 ’list’

0x09 ’module’

0x0a ’persistent’

0x0b ’tuple’

0x0c ’unpersistable’

0x0d ’copy’

0x0e ’cache’

0x0f ’cached’

0x10 ’remote’

0x11 ’local’

0x12 ’lcache’

0x13 ’version’

0x14 ’login’

0x15 ’password’

0x16 ’challenge’

0x17 ’logged in’

0x18 ’not logged in’

0x19 ’cachemessage’

0x1a ’message’

0x1b ’answer’

0x1c ’error’

0x1d ’decref’

0x1e ’decache’

0x1f ’uncache’

CHAPTER 10. APPENDIX 195

10.3.5 Protocol Handshake and Behaviour
The initiating side of the connection will be referred to as “client”, and the other side as “server”.

Upon connection, the server will send the client a list of string elements, signifying the profiles it supports. It is
recommended that "none" be included in this list. The client then sends the server a string from this list, telling the
server which profile it wants to use. At this point the whole session will use this profile.

Once a profile has been established, the two sides may start exchanging elements. There is no limitation on order
or dependencies of messages. Any such limitation (e.g. “server can only send an element to client in response to a
request from client”) is application specific.

Upon receiving illegal messages, failed handshakes, etc., a Banana client or server should close its connection.

