next up previous contents
Next: ERF Error Function Up: Mathematical Functions Previous: ERFCX Complimentary Weighted Error   Contents

Subsections

ERFC Complimentary Error Function

Usage

Computes the complimentary error function for real arguments. The erfc function takes only a single argument

  y = erfc(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

Function Internals

The erfc function is defined by the integral:

$\displaystyle \mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}}\int_{x}^{\infty} e^{-t^2}   dt,
$

and is the integral of the normal distribution.

Example

Here is a plot of the erfc function over the range [-5,5].

--> x = linspace(-5,5);
--> y = erfc(x);
--> plot(x,y); xlabel('x'); ylabel('erfc(x)');

which results in the following plot.

3493



Samit K. Basu 2005-03-16