scipy.special.it2j0y0

scipy.special.it2j0y0(x, out=None) = <ufunc 'it2j0y0'>

Integrals related to Bessel functions of the first kind of order 0.

Computes the integrals

\[\begin{split}\int_0^x \frac{1 - J_0(t)}{t} dt \\ \int_x^\infty \frac{Y_0(t)}{t} dt.\end{split}\]

For more on \(J_0\) and \(Y_0\) see j0 and y0.

Parameters:
xarray_like

Values at which to evaluate the integrals.

outtuple of ndarrays, optional

Optional output arrays for the function results.

Returns:
ij0scalar or ndarray

The integral for j0

iy0scalar or ndarray

The integral for y0